![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bicom | Unicode version |
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
Ref | Expression |
---|---|
bicom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicom1 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | bicom1 129 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | impbii 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bicomd 139 bibi1i 226 bibi1d 231 ibibr 244 bibif 646 con2bidc 802 con2biddc 807 pm5.17dc 843 bigolden 896 nbbndc 1325 bilukdc 1327 falbitru 1348 3impexpbicom 1367 exists1 2037 eqcom 2083 abeq1 2188 necon2abiddc 2311 necon2bbiddc 2312 necon4bbiddc 2319 ssequn1 3142 axpow3 3951 isocnv 5471 bezoutlemle 10397 |
Copyright terms: Public domain | W3C validator |