![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bifal | Unicode version |
Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
Ref | Expression |
---|---|
bifal.1 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
bifal |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bifal.1 |
. 2
![]() ![]() ![]() | |
2 | fal 1291 |
. 2
![]() ![]() ![]() | |
3 | 1, 2 | 2false 649 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |