| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bifal | GIF version | ||
| Description: A contradiction is equivalent to falsehood. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| bifal.1 | ⊢ ¬ 𝜑 |
| Ref | Expression |
|---|---|
| bifal | ⊢ (𝜑 ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bifal.1 | . 2 ⊢ ¬ 𝜑 | |
| 2 | fal 1291 | . 2 ⊢ ¬ ⊥ | |
| 3 | 1, 2 | 2false 649 | 1 ⊢ (𝜑 ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 103 ⊥wfal 1289 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |