![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2false | Unicode version |
Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
2false.1 |
![]() ![]() ![]() |
2false.2 |
![]() ![]() ![]() |
Ref | Expression |
---|---|
2false |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2false.1 |
. . 3
![]() ![]() ![]() | |
2 | 1 | pm2.21i 607 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2false.2 |
. . 3
![]() ![]() ![]() | |
4 | 3 | pm2.21i 607 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | impbii 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 105 ax-ia3 106 ax-in2 577 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bianfi 888 bifal 1297 dfnul2 3253 dfnul3 3254 rab0 3273 iun0 3734 0iun 3735 0xp 4438 cnv0 4747 co02 4854 0er 6163 bdnth 10625 bdnthALT 10626 |
Copyright terms: Public domain | W3C validator |