| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inex | Unicode version | ||
| Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2613 |
. 2
| |
| 2 | elisset 2613 |
. 2
| |
| 3 | ax-17 1459 |
. . . 4
| |
| 4 | 19.29r 1552 |
. . . 4
| |
| 5 | 3, 4 | sylan2 280 |
. . 3
|
| 6 | ax-17 1459 |
. . . . 5
| |
| 7 | 19.29 1551 |
. . . . 5
| |
| 8 | 6, 7 | sylan 277 |
. . . 4
|
| 9 | 8 | eximi 1531 |
. . 3
|
| 10 | ineq12 3162 |
. . . . 5
| |
| 11 | 10 | 2eximi 1532 |
. . . 4
|
| 12 | dfin5 2980 |
. . . . . . 7
| |
| 13 | vex 2604 |
. . . . . . . 8
| |
| 14 | ax-bdel 10612 |
. . . . . . . . 9
| |
| 15 | bdcv 10639 |
. . . . . . . . 9
| |
| 16 | 14, 15 | bdrabexg 10697 |
. . . . . . . 8
|
| 17 | 13, 16 | ax-mp 7 |
. . . . . . 7
|
| 18 | 12, 17 | eqeltri 2151 |
. . . . . 6
|
| 19 | eleq1 2141 |
. . . . . 6
| |
| 20 | 18, 19 | mpbii 146 |
. . . . 5
|
| 21 | 20 | exlimivv 1817 |
. . . 4
|
| 22 | 11, 21 | syl 14 |
. . 3
|
| 23 | 5, 9, 22 | 3syl 17 |
. 2
|
| 24 | 1, 2, 23 | syl2an 283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-bd0 10604 ax-bdan 10606 ax-bdel 10612 ax-bdsb 10613 ax-bdsep 10675 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-in 2979 df-ss 2986 df-bdc 10632 |
| This theorem is referenced by: speano5 10739 |
| Copyright terms: Public domain | W3C validator |