Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel Unicode version

Theorem bj-intabssel 10599
Description: Version of intss1 3651 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf  |-  F/_ x A
Assertion
Ref Expression
bj-intabssel  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3  |-  F/_ x A
21nfsbc1 2832 . . 3  |-  F/ x [. A  /  x ]. ph
3 sbceq1a 2824 . . 3  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
41, 2, 3elabgf 2736 . 2  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  [. A  /  x ]. ph ) )
5 intss1 3651 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5syl6bir 162 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1433   {cab 2067   F/_wnfc 2206   [.wsbc 2815    C_ wss 2973   |^|cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-in 2979  df-ss 2986  df-int 3637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator