ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bm2.5ii Unicode version

Theorem bm2.5ii 4240
Description: Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
bm2.5ii.1  |-  A  e. 
_V
Assertion
Ref Expression
bm2.5ii  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Distinct variable group:    x, y, A

Proof of Theorem bm2.5ii
StepHypRef Expression
1 bm2.5ii.1 . . 3  |-  A  e. 
_V
21ssonunii 4233 . 2  |-  ( A 
C_  On  ->  U. A  e.  On )
3 unissb 3631 . . . . . 6  |-  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x )
43a1i 9 . . . . 5  |-  ( x  e.  On  ->  ( U. A  C_  x  <->  A. y  e.  A  y  C_  x ) )
54rabbiia 2591 . . . 4  |-  { x  e.  On  |  U. A  C_  x }  =  {
x  e.  On  |  A. y  e.  A  y  C_  x }
65inteqi 3640 . . 3  |-  |^| { x  e.  On  |  U. A  C_  x }  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x }
7 intmin 3656 . . 3  |-  ( U. A  e.  On  ->  |^|
{ x  e.  On  |  U. A  C_  x }  =  U. A )
86, 7syl5reqr 2128 . 2  |-  ( U. A  e.  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
92, 8syl 14 1  |-  ( A 
C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   {crab 2352   _Vcvv 2601    C_ wss 2973   U.cuni 3601   |^|cint 3636   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986  df-uni 3602  df-int 3637  df-tr 3876  df-iord 4121  df-on 4123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator