HomeHome Intuitionistic Logic Explorer
Theorem List (p. 43 of 108)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremuniuni 4201* Expression for double union that moves union into a class builder. (Contributed by FL, 28-May-2007.)
 |- 
 U. U. A  =  U. { x  |  E. y
 ( x  =  U. y  /\  y  e.  A ) }
 
Theoremeusv1 4202* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.)
 |-  ( E! y A. x  y  =  A  <->  E. y A. x  y  =  A )
 
Theoremeusvnf 4203* Even if  x is free in  A, it is effectively bound when  A ( x ) is single-valued. (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  ( E! y A. x  y  =  A  -> 
 F/_ x A )
 
Theoremeusvnfb 4204* Two ways to say that  A ( x ) is a set expression that does not depend on  x. (Contributed by Mario Carneiro, 18-Nov-2016.)
 |-  ( E! y A. x  y  =  A  <->  (
 F/_ x A  /\  A  e.  _V )
 )
 
Theoremeusv2i 4205* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.)
 |-  ( E! y A. x  y  =  A  ->  E! y E. x  y  =  A )
 
Theoremeusv2nf 4206* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by Mario Carneiro, 18-Nov-2016.)
 |-  A  e.  _V   =>    |-  ( E! y E. x  y  =  A 
 <-> 
 F/_ x A )
 
Theoremeusv2 4207* Two ways to express single-valuedness of a class expression  A ( x ). (Contributed by NM, 15-Oct-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  A  e.  _V   =>    |-  ( E! y E. x  y  =  A 
 <->  E! y A. x  y  =  A )
 
Theoremreusv1 4208* Two ways to express single-valuedness of a class expression  C ( y ). (Contributed by NM, 16-Dec-2012.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  ( E. y  e.  B  ph  ->  ( E! x  e.  A  A. y  e.  B  ( ph  ->  x  =  C ) 
 <-> 
 E. x  e.  A  A. y  e.  B  (
 ph  ->  x  =  C ) ) )
 
Theoremreusv3i 4209* Two ways of expressing existential uniqueness via an indirect equality. (Contributed by NM, 23-Dec-2012.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   &    |-  (
 y  =  z  ->  C  =  D )   =>    |-  ( E. x  e.  A  A. y  e.  B  (
 ph  ->  x  =  C )  ->  A. y  e.  B  A. z  e.  B  ( ( ph  /\  ps )  ->  C  =  D ) )
 
Theoremreusv3 4210* Two ways to express single-valuedness of a class expression  C ( y ). See reusv1 4208 for the connection to uniqueness. (Contributed by NM, 27-Dec-2012.)
 |-  ( y  =  z 
 ->  ( ph  <->  ps ) )   &    |-  (
 y  =  z  ->  C  =  D )   =>    |-  ( E. y  e.  B  ( ph  /\  C  e.  A )  ->  ( A. y  e.  B  A. z  e.  B  ( ( ph  /\ 
 ps )  ->  C  =  D )  <->  E. x  e.  A  A. y  e.  B  (
 ph  ->  x  =  C ) ) )
 
Theoremalxfr 4211* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 18-Feb-2007.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( ( A. y  A  e.  B  /\  A. x E. y  x  =  A )  ->  ( A. x ph  <->  A. y ps ) )
 
Theoremralxfrd 4212* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 15-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  C  x  =  A )   &    |-  (
 ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps 
 <-> 
 A. y  e.  C  ch ) )
 
Theoremrexxfrd 4213* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by FL, 10-Apr-2007.) (Revised by Mario Carneiro, 15-Aug-2014.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  B )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  E. y  e.  C  x  =  A )   &    |-  (
 ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  B  ps 
 <-> 
 E. y  e.  C  ch ) )
 
Theoremralxfr2d 4214* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  V )   &    |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A )
 )   &    |-  ( ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  B  ps 
 <-> 
 A. y  e.  C  ch ) )
 
Theoremrexxfr2d 4215* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
 |-  ( ( ph  /\  y  e.  C )  ->  A  e.  V )   &    |-  ( ph  ->  ( x  e.  B  <->  E. y  e.  C  x  =  A )
 )   &    |-  ( ( ph  /\  x  =  A )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  B  ps 
 <-> 
 E. y  e.  C  ch ) )
 
Theoremralxfr 4216* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
 |-  ( y  e.  C  ->  A  e.  B )   &    |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
 
TheoremralxfrALT 4217* Transfer universal quantification from a variable  x to another variable  y contained in expression  A. This proof does not use ralxfrd 4212. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( y  e.  C  ->  A  e.  B )   &    |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x  e.  B  ph  <->  A. y  e.  C  ps )
 
Theoremrexxfr 4218* Transfer existence from a variable 
x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
 |-  ( y  e.  C  ->  A  e.  B )   &    |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x  e.  B  ph  <->  E. y  e.  C  ps )
 
Theoremrabxfrd 4219* Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ch. (Contributed by NM, 16-Jan-2012.)
 |-  F/_ y B   &    |-  F/_ y C   &    |-  (
 ( ph  /\  y  e.  D )  ->  A  e.  D )   &    |-  ( x  =  A  ->  ( ps  <->  ch ) )   &    |-  ( y  =  B  ->  A  =  C )   =>    |-  ( ( ph  /\  B  e.  D )  ->  ( C  e.  { x  e.  D  |  ps }  <->  B  e.  { y  e.  D  |  ch }
 ) )
 
Theoremrabxfr 4220* Class builder membership after substituting an expression  A (containing  y) for  x in the class expression  ph. (Contributed by NM, 10-Jun-2005.)
 |-  F/_ y B   &    |-  F/_ y C   &    |-  (
 y  e.  D  ->  A  e.  D )   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   &    |-  (
 y  =  B  ->  A  =  C )   =>    |-  ( B  e.  D  ->  ( C  e.  { x  e.  D  |  ph
 } 
 <->  B  e.  { y  e.  D  |  ps }
 ) )
 
Theoremreuhypd 4221* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 16-Jan-2012.)
 |-  ( ( ph  /\  x  e.  C )  ->  B  e.  C )   &    |-  ( ( ph  /\  x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <->  y  =  B ) )   =>    |-  ( ( ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
 
Theoremreuhyp 4222* A theorem useful for eliminating restricted existential uniqueness hypotheses. (Contributed by NM, 15-Nov-2004.)
 |-  ( x  e.  C  ->  B  e.  C )   &    |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <->  y  =  B ) )   =>    |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
 
Theoremuniexb 4223 The Axiom of Union and its converse. A class is a set iff its union is a set. (Contributed by NM, 11-Nov-2003.)
 |-  ( A  e.  _V  <->  U. A  e.  _V )
 
Theorempwexb 4224 The Axiom of Power Sets and its converse. A class is a set iff its power class is a set. (Contributed by NM, 11-Nov-2003.)
 |-  ( A  e.  _V  <->  ~P A  e.  _V )
 
Theoremuniv 4225 The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
 |- 
 U. _V  =  _V
 
Theoremeldifpw 4226 Membership in a power class difference. (Contributed by NM, 25-Mar-2007.)
 |-  C  e.  _V   =>    |-  ( ( A  e.  ~P B  /\  -.  C  C_  B )  ->  ( A  u.  C )  e.  ( ~P ( B  u.  C )  \  ~P B ) )
 
Theoremop1stb 4227 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by NM, 25-Nov-2003.)
 |-  A  e.  _V   &    |-  B  e.  _V   =>    |- 
 |^| |^| <. A ,  B >.  =  A
 
Theoremop1stbg 4228 Extract the first member of an ordered pair. Theorem 73 of [Suppes] p. 42. (Contributed by Jim Kingdon, 17-Dec-2018.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  |^| |^| <. A ,  B >.  =  A )
 
Theoremiunpw 4229* An indexed union of a power class in terms of the power class of the union of its index. Part of Exercise 24(b) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
 |-  A  e.  _V   =>    |-  ( E. x  e.  A  x  =  U. A 
 <->  ~P U. A  =  U_ x  e.  A  ~P x )
 
2.4.2  Ordinals (continued)
 
Theoremordon 4230 The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
 |- 
 Ord  On
 
Theoremssorduni 4231 The union of a class of ordinal numbers is ordinal. Proposition 7.19 of [TakeutiZaring] p. 40. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
 |-  ( A  C_  On  ->  Ord  U. A )
 
Theoremssonuni 4232 The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
 |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
 
Theoremssonunii 4233 The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  C_  On  ->  U. A  e.  On )
 
Theoremonun2 4234 The union of two ordinal numbers is an ordinal number. (Contributed by Jim Kingdon, 25-Jul-2019.)
 |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A  u.  B )  e.  On )
 
Theoremonun2i 4235 The union of two ordinal numbers is an ordinal number. (Contributed by NM, 13-Jun-1994.) (Constructive proof by Jim Kingdon, 25-Jul-2019.)
 |-  A  e.  On   &    |-  B  e.  On   =>    |-  ( A  u.  B )  e.  On
 
Theoremordsson 4236 Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.)
 |-  ( Ord  A  ->  A 
 C_  On )
 
Theoremonss 4237 An ordinal number is a subset of the class of ordinal numbers. (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  On  ->  A  C_  On )
 
Theoremonuni 4238 The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
 |-  ( A  e.  On  ->  U. A  e.  On )
 
Theoremorduni 4239 The union of an ordinal class is ordinal. (Contributed by NM, 12-Sep-2003.)
 |-  ( Ord  A  ->  Ord  U. A )
 
Theorembm2.5ii 4240* Problem 2.5(ii) of [BellMachover] p. 471. (Contributed by NM, 20-Sep-2003.)
 |-  A  e.  _V   =>    |-  ( A  C_  On  ->  U. A  =  |^| { x  e.  On  |  A. y  e.  A  y  C_  x } )
 
Theoremsucexb 4241 A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
 |-  ( A  e.  _V  <->  suc  A  e.  _V )
 
Theoremsucexg 4242 The successor of a set is a set (generalization). (Contributed by NM, 5-Jun-1994.)
 |-  ( A  e.  V  ->  suc  A  e.  _V )
 
Theoremsucex 4243 The successor of a set is a set. (Contributed by NM, 30-Aug-1993.)
 |-  A  e.  _V   =>    |-  suc  A  e.  _V
 
Theoremordsucim 4244 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 8-Nov-2018.)
 |-  ( Ord  A  ->  Ord 
 suc  A )
 
Theoremsuceloni 4245 The successor of an ordinal number is an ordinal number. Proposition 7.24 of [TakeutiZaring] p. 41. (Contributed by NM, 6-Jun-1994.)
 |-  ( A  e.  On  ->  suc  A  e.  On )
 
Theoremordsucg 4246 The successor of an ordinal class is ordinal. (Contributed by Jim Kingdon, 20-Nov-2018.)
 |-  ( A  e.  _V  ->  ( Ord  A  <->  Ord  suc  A )
 )
 
Theoremsucelon 4247 The successor of an ordinal number is an ordinal number. (Contributed by NM, 9-Sep-2003.)
 |-  ( A  e.  On  <->  suc  A  e.  On )
 
Theoremordsucss 4248 The successor of an element of an ordinal class is a subset of it. (Contributed by NM, 21-Jun-1998.)
 |-  ( Ord  B  ->  ( A  e.  B  ->  suc 
 A  C_  B )
 )
 
Theoremordelsuc 4249 A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
 |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc 
 A  C_  B )
 )
 
Theoremonsucssi 4250 A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
 |-  A  e.  On   &    |-  B  e.  On   =>    |-  ( A  e.  B  <->  suc 
 A  C_  B )
 
Theoremonsucmin 4251* The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
 |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x }
 )
 
Theoremonsucelsucr 4252 Membership is inherited by predecessors. The converse, for all ordinals, implies excluded middle, as shown at onsucelsucexmid 4273. However, the converse does hold where  B is a natural number, as seen at nnsucelsuc 6093. (Contributed by Jim Kingdon, 17-Jul-2019.)
 |-  ( B  e.  On  ->  ( suc  A  e.  suc 
 B  ->  A  e.  B ) )
 
Theoremonsucsssucr 4253 The subclass relationship between two ordinals is inherited by their predecessors. The converse implies excluded middle, as shown at onsucsssucexmid 4270. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
 |-  ( ( A  e.  On  /\  Ord  B )  ->  ( suc  A  C_  suc 
 B  ->  A  C_  B ) )
 
Theoremsucunielr 4254 Successor and union. The converse (where  B is an ordinal) implies excluded middle, as seen at ordsucunielexmid 4274. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  ( suc  A  e.  B  ->  A  e.  U. B )
 
Theoremunon 4255 The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
 |- 
 U. On  =  On
 
Theoremonuniss2 4256* The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  ( A  e.  On  ->  U. { x  e. 
 On  |  x  C_  A }  =  A )
 
Theoremlimon 4257 The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
 |- 
 Lim  On
 
Theoremordunisuc2r 4258* An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
 |-  ( Ord  A  ->  (
 A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
 
Theoremonssi 4259 An ordinal number is a subset of 
On. (Contributed by NM, 11-Aug-1994.)
 |-  A  e.  On   =>    |-  A  C_  On
 
Theoremonsuci 4260 The successor of an ordinal number is an ordinal number. Corollary 7N(c) of [Enderton] p. 193. (Contributed by NM, 12-Jun-1994.)
 |-  A  e.  On   =>    |-  suc  A  e.  On
 
Theoremonintonm 4261* The intersection of an inhabited collection of ordinal numbers is an ordinal number. Compare Exercise 6 of [TakeutiZaring] p. 44. (Contributed by Mario Carneiro and Jim Kingdon, 30-Aug-2021.)
 |-  ( ( A  C_  On  /\  E. x  x  e.  A )  ->  |^| A  e.  On )
 
Theoremonintrab2im 4262 An existence condition which implies an intersection is an ordinal number. (Contributed by Jim Kingdon, 30-Aug-2021.)
 |-  ( E. x  e. 
 On  ph  ->  |^| { x  e.  On  |  ph }  e.  On )
 
Theoremordtriexmidlem 4263 Lemma for decidability and ordinals. The set  { x  e.  { (/) }  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4265 or weak linearity in ordsoexmid 4305) with a proposition  ph. Our lemma states that it is an ordinal number. (Contributed by Jim Kingdon, 28-Jan-2019.)
 |- 
 { x  e.  { (/)
 }  |  ph }  e.  On
 
Theoremordtriexmidlem2 4264* Lemma for decidability and ordinals. The set  { x  e.  { (/) }  |  ph } is a way of connecting statements about ordinals (such as trichotomy in ordtriexmid 4265 or weak linearity in ordsoexmid 4305) with a proposition  ph. Our lemma helps connect that set to excluded middle. (Contributed by Jim Kingdon, 28-Jan-2019.)
 |-  ( { x  e. 
 { (/) }  |  ph }  =  (/)  ->  -.  ph )
 
Theoremordtriexmid 4265* Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

(Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )   =>    |-  ( ph  \/  -.  ph )
 
Theoremordtri2orexmid 4266* Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 31-Jul-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  y  C_  x )   =>    |-  ( ph  \/  -.  ph )
 
Theorem2ordpr 4267 Version of 2on 6032 with the definition of  2o expanded and expressed in terms of  Ord. (Contributed by Jim Kingdon, 29-Aug-2021.)
 |- 
 Ord  { (/) ,  { (/) } }
 
Theoremontr2exmid 4268* An ordinal transitivity law which implies excluded middle. (Contributed by Jim Kingdon, 17-Sep-2021.)
 |- 
 A. x  e.  On  A. y A. z  e. 
 On  ( ( x 
 C_  y  /\  y  e.  z )  ->  x  e.  z )   =>    |-  ( ph  \/  -.  ph )
 
Theoremordtri2or2exmidlem 4269* A set which is  2o if  ph or  (/) if  -.  ph is an ordinal. (Contributed by Jim Kingdon, 29-Aug-2021.)
 |- 
 { x  e.  { (/)
 ,  { (/) } }  |  ph }  e.  On
 
Theoremonsucsssucexmid 4270* The converse of onsucsssucr 4253 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_ 
 suc  y )   =>    |-  ( ph  \/  -.  ph )
 
Theoremonsucelsucexmidlem1 4271* Lemma for onsucelsucexmid 4273. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |-  (/)  e.  { x  e. 
 { (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }
 
Theoremonsucelsucexmidlem 4272* Lemma for onsucelsucexmid 4273. The set  { x  e. 
{ (/) ,  { (/) } }  |  ( x  =  (/)  \/  ph ) } appears as  A in the proof of Theorem 1.3 in [Bauer] p. 483 (see acexmidlema 5523), and similar sets also appear in other proofs that various propositions imply excluded middle, for example in ordtriexmidlem 4263. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |- 
 { x  e.  { (/)
 ,  { (/) } }  |  ( x  =  (/)  \/  ph ) }  e.  On
 
Theoremonsucelsucexmid 4273* The converse of onsucelsucr 4252 implies excluded middle. On the other hand, if  y is constrained to be a natural number, instead of an arbitrary ordinal, then the converse of onsucelsucr 4252 does hold, as seen at nnsucelsuc 6093. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  y  ->  suc 
 x  e.  suc  y
 )   =>    |-  ( ph  \/  -.  ph )
 
Theoremordsucunielexmid 4274* The converse of sucunielr 4254 (where  B is an ordinal) implies excluded middle. (Contributed by Jim Kingdon, 2-Aug-2019.)
 |- 
 A. x  e.  On  A. y  e.  On  ( x  e.  U. y  ->  suc  x  e.  y )   =>    |-  ( ph  \/  -.  ph )
 
2.5  IZF Set Theory - add the Axiom of Set Induction
 
2.5.1  The ZF Axiom of Foundation would imply Excluded Middle
 
Theoremregexmidlemm 4275* Lemma for regexmid 4278. 
A is inhabited. (Contributed by Jim Kingdon, 3-Sep-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  ( x  =  (/)  /\  ph ) ) }   =>    |- 
 E. y  y  e.  A
 
Theoremregexmidlem1 4276* Lemma for regexmid 4278. If  A has a minimal element, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2019.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  ( x  =  (/)  /\  ph ) ) }   =>    |-  ( E. y ( y  e.  A  /\  A. z ( z  e.  y  ->  -.  z  e.  A ) )  ->  ( ph  \/  -.  ph ) )
 
Theoremreg2exmidlema 4277* Lemma for reg2exmid 4279. If  A has a minimal element (expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
 |-  A  =  { x  e.  { (/) ,  { (/) } }  |  ( x  =  { (/)
 }  \/  ( x  =  (/)  /\  ph ) ) }   =>    |-  ( E. u  e.  A  A. v  e.  A  u  C_  v  ->  ( ph  \/  -.  ph ) )
 
Theoremregexmid 4278* The axiom of foundation implies excluded middle.

By foundation (or regularity), we mean the principle that every inhabited set has an element which is minimal (when arranged by  e.). The statement of foundation here is taken from Metamath Proof Explorer's ax-reg, and is identical (modulo one unnecessary quantifier) to the statement of foundation in Theorem "Foundation implies instances of EM" of [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

For this reason, IZF does not adopt foundation as an axiom and instead replaces it with ax-setind 4280. (Contributed by Jim Kingdon, 3-Sep-2019.)

 |-  ( E. y  y  e.  x  ->  E. y
 ( y  e.  x  /\  A. z ( z  e.  y  ->  -.  z  e.  x ) ) )   =>    |-  ( ph  \/  -.  ph )
 
Theoremreg2exmid 4279* If any inhabited set has a minimal element (when expressed by  C_), excluded middle follows. (Contributed by Jim Kingdon, 2-Oct-2021.)
 |- 
 A. z ( E. w  w  e.  z  ->  E. x  e.  z  A. y  e.  z  x  C_  y )   =>    |-  ( ph  \/  -.  ph )
 
2.5.2  Introduce the Axiom of Set Induction
 
Axiomax-setind 4280* Axiom of  e.-Induction (also known as set induction). An axiom of Intuitionistic Zermelo-Fraenkel set theory. Axiom 9 of [Crosilla] p. "Axioms of CZF and IZF". This replaces the Axiom of Foundation (also called Regularity) from Zermelo-Fraenkel set theory.

For more on axioms which might be adopted which are incompatible with this axiom (that is, Non-wellfounded Set Theory but in the absence of excluded middle), see Chapter 20 of [AczelRathjen], p. 183. (Contributed by Jim Kingdon, 19-Oct-2018.)

 |-  ( A. a (
 A. y  e.  a  [ y  /  a ] ph  ->  ph )  ->  A. a ph )
 
Theoremsetindel 4281*  e.-Induction in terms of membership in a class. (Contributed by Mario Carneiro and Jim Kingdon, 22-Oct-2018.)
 |-  ( A. x (
 A. y ( y  e.  x  ->  y  e.  S )  ->  x  e.  S )  ->  S  =  _V )
 
Theoremsetind 4282* Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
 |-  ( A. x ( x  C_  A  ->  x  e.  A )  ->  A  =  _V )
 
Theoremsetind2 4283 Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
 |-  ( ~P A  C_  A  ->  A  =  _V )
 
Theoremelirr 4284 No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22.

The reason that this theorem is marked as discouraged is a bit subtle. If we wanted to reduce usage of ax-setind 4280, we could redefine  Ord  A (df-iord 4121) to also require  _E 
Fr  A (df-frind 4087) and in that case any theorem related to irreflexivity of ordinals could use ordirr 4285 (which under that definition would presumably not need ax-setind 4280 to prove it). But since ordinals have not yet been defined that way, we cannot rely on the "don't add additional axiom use" feature of the minimizer to get theorems to use ordirr 4285. To encourage ordirr 4285 when possible, we mark this theorem as discouraged.

(Contributed by NM, 7-Aug-1994.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 26-Nov-2018.) (New usage is discouraged.)

 |- 
 -.  A  e.  A
 
Theoremordirr 4285 Epsilon irreflexivity of ordinals: no ordinal class is a member of itself. Theorem 2.2(i) of [BellMachover] p. 469, generalized to classes. The present proof requires ax-setind 4280. If in the definition of ordinals df-iord 4121, we also required that membership be well-founded on any ordinal (see df-frind 4087), then we could prove ordirr 4285 without ax-setind 4280. (Contributed by NM, 2-Jan-1994.)
 |-  ( Ord  A  ->  -.  A  e.  A )
 
Theoremonirri 4286 An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
 |-  A  e.  On   =>    |-  -.  A  e.  A
 
Theoremnordeq 4287 A member of an ordinal class is not equal to it. (Contributed by NM, 25-May-1998.)
 |-  ( ( Ord  A  /\  B  e.  A ) 
 ->  A  =/=  B )
 
Theoremordn2lp 4288 An ordinal class cannot be an element of one of its members. Variant of first part of Theorem 2.2(vii) of [BellMachover] p. 469. (Contributed by NM, 3-Apr-1994.)
 |-  ( Ord  A  ->  -.  ( A  e.  B  /\  B  e.  A ) )
 
Theoremorddisj 4289 An ordinal class and its singleton are disjoint. (Contributed by NM, 19-May-1998.)
 |-  ( Ord  A  ->  ( A  i^i  { A } )  =  (/) )
 
Theoremorddif 4290 Ordinal derived from its successor. (Contributed by NM, 20-May-1998.)
 |-  ( Ord  A  ->  A  =  ( suc  A  \  { A } )
 )
 
Theoremelirrv 4291 The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (Contributed by NM, 19-Aug-1993.)
 |- 
 -.  x  e.  x
 
Theoremsucprcreg 4292 A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
 |-  ( -.  A  e.  _V  <->  suc 
 A  =  A )
 
Theoremruv 4293 The Russell class is equal to the universe  _V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.)
 |- 
 { x  |  x  e/  x }  =  _V
 
TheoremruALT 4294 Alternate proof of Russell's Paradox ru 2814, simplified using (indirectly) the Axiom of Set Induction ax-setind 4280. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 { x  |  x  e/  x }  e/  _V
 
Theoremonprc 4295 No set contains all ordinal numbers. Proposition 7.13 of [TakeutiZaring] p. 38. This is also known as the Burali-Forti paradox (remark in [Enderton] p. 194). In 1897, Cesare Burali-Forti noticed that since the "set" of all ordinal numbers is an ordinal class (ordon 4230), it must be both an element of the set of all ordinal numbers yet greater than every such element. ZF set theory resolves this paradox by not allowing the class of all ordinal numbers to be a set (so instead it is a proper class). Here we prove the denial of its existence. (Contributed by NM, 18-May-1994.)
 |- 
 -.  On  e.  _V
 
Theoremsucon 4296 The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
 |- 
 suc  On  =  On
 
Theoremen2lp 4297 No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Proof rewritten by Mario Carneiro and Jim Kingdon, 27-Nov-2018.)
 |- 
 -.  ( A  e.  B  /\  B  e.  A )
 
Theorempreleq 4298 Equality of two unordered pairs when one member of each pair contains the other member. (Contributed by NM, 16-Oct-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( ( ( A  e.  B  /\  C  e.  D )  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D ) )
 
Theoremopthreg 4299 Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4280 (via the preleq 4298 step). See df-op 3407 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  C  e.  _V   &    |-  D  e.  _V   =>    |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
 
Theoremsuc11g 4300 The successor operation behaves like a one-to-one function (assuming the Axiom of Set Induction). Similar to Exercise 35 of [Enderton] p. 208 and its converse. (Contributed by NM, 25-Oct-2003.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10795
  Copyright terms: Public domain < Previous  Next >