ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caov31 Unicode version

Theorem caov31 5710
Description: Rearrange arguments in a commutative, associative operation. (Contributed by NM, 26-Aug-1995.)
Hypotheses
Ref Expression
caov.1  |-  A  e. 
_V
caov.2  |-  B  e. 
_V
caov.3  |-  C  e. 
_V
caov.com  |-  ( x F y )  =  ( y F x )
caov.ass  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
Assertion
Ref Expression
caov31  |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z

Proof of Theorem caov31
StepHypRef Expression
1 caov.1 . . . 4  |-  A  e. 
_V
2 caov.3 . . . 4  |-  C  e. 
_V
3 caov.2 . . . 4  |-  B  e. 
_V
4 caov.ass . . . 4  |-  ( ( x F y ) F z )  =  ( x F ( y F z ) )
51, 2, 3, 4caovass 5681 . . 3  |-  ( ( A F C ) F B )  =  ( A F ( C F B ) )
6 caov.com . . . 4  |-  ( x F y )  =  ( y F x )
71, 2, 3, 6, 4caov12 5709 . . 3  |-  ( A F ( C F B ) )  =  ( C F ( A F B ) )
85, 7eqtri 2101 . 2  |-  ( ( A F C ) F B )  =  ( C F ( A F B ) )
91, 3, 2, 6, 4caov32 5708 . 2  |-  ( ( A F B ) F C )  =  ( ( A F C ) F B )
102, 1, 3, 6, 4caov32 5708 . . 3  |-  ( ( C F A ) F B )  =  ( ( C F B ) F A )
112, 1, 3, 4caovass 5681 . . 3  |-  ( ( C F A ) F B )  =  ( C F ( A F B ) )
1210, 11eqtr3i 2103 . 2  |-  ( ( C F B ) F A )  =  ( C F ( A F B ) )
138, 9, 123eqtr4i 2111 1  |-  ( ( A F B ) F C )  =  ( ( C F B ) F A )
Colors of variables: wff set class
Syntax hints:    = wceq 1284    e. wcel 1433   _Vcvv 2601  (class class class)co 5532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535
This theorem is referenced by:  caov13  5711
  Copyright terms: Public domain W3C validator