ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdi Unicode version

Theorem caovdi 5700
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.)
Hypotheses
Ref Expression
caovdi.1  |-  A  e. 
_V
caovdi.2  |-  B  e. 
_V
caovdi.3  |-  C  e. 
_V
caovdi.4  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
Assertion
Ref Expression
caovdi  |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, G, y, z

Proof of Theorem caovdi
StepHypRef Expression
1 caovdi.1 . 2  |-  A  e. 
_V
2 caovdi.2 . 2  |-  B  e. 
_V
3 caovdi.3 . 2  |-  C  e. 
_V
4 tru 1288 . . 3  |- T.
5 caovdi.4 . . . . 5  |-  ( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) )
65a1i 9 . . . 4  |-  ( ( T.  /\  ( x  e.  _V  /\  y  e.  _V  /\  z  e. 
_V ) )  -> 
( x G ( y F z ) )  =  ( ( x G y ) F ( x G z ) ) )
76caovdig 5695 . . 3  |-  ( ( T.  /\  ( A  e.  _V  /\  B  e.  _V  /\  C  e. 
_V ) )  -> 
( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) ) )
84, 7mpan 414 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) ) )
91, 2, 3, 8mp3an 1268 1  |-  ( A G ( B F C ) )  =  ( ( A G B ) F ( A G C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    /\ w3a 919    = wceq 1284   T. wtru 1285    e. wcel 1433   _Vcvv 2601  (class class class)co 5532
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-iota 4887  df-fv 4930  df-ov 5535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator