![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biimprd | Unicode version |
Description: Deduce a converse implication from a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 22-Sep-2013.) |
Ref | Expression |
---|---|
biimprd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
biimprd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biimprd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5ibr 154 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl6bir 162 mpbird 165 sylibrd 167 sylbird 168 imbi1d 229 biimpar 291 notbid 624 mtbid 629 mtbii 631 orbi2d 736 pm4.55dc 879 pm3.11dc 898 prlem1 914 nfimd 1517 dral1 1658 cbvalh 1676 ax16i 1779 speiv 1783 a16g 1785 cleqh 2178 pm13.18 2326 rspcimdv 2702 rspcimedv 2703 rspcedv 2705 moi2 2773 moi 2775 eqrd 3017 ralxfrd 4212 ralxfr2d 4214 rexxfr2d 4215 elres 4664 2elresin 5030 f1ocnv 5159 tz6.12c 5224 fvun1 5260 dffo4 5336 isores3 5475 tposfo2 5905 issmo2 5927 iordsmo 5935 smoel2 5941 prarloclemarch 6608 genprndl 6711 genprndu 6712 ltpopr 6785 ltsopr 6786 recexprlem1ssl 6823 recexprlem1ssu 6824 aptiprlemu 6830 lttrsr 6939 nnmulcl 8060 nnnegz 8354 eluzdc 8697 negm 8700 iccid 8948 icoshft 9012 fzen 9062 elfz2nn0 9128 elfzom1p1elfzo 9223 flqeqceilz 9320 zmodidfzoimp 9356 caucvgre 9867 qdenre 10088 dvdsval2 10198 negdvdsb 10211 muldvds2 10221 dvdsabseq 10247 bezoutlemaz 10392 bezoutlembz 10393 rplpwr 10416 ialginv 10429 ialgfx 10434 coprmgcdb 10470 divgcdcoprm0 10483 prmgt1 10513 oddprmgt2 10515 rpexp1i 10533 2sqpwodd 10554 bj-omssind 10730 bj-bdfindes 10744 bj-nntrans 10746 bj-nnelirr 10748 bj-omtrans 10751 setindis 10762 bdsetindis 10764 bj-inf2vnlem3 10767 bj-inf2vnlem4 10768 bj-findis 10774 bj-findes 10776 |
Copyright terms: Public domain | W3C validator |