| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex2 | Unicode version | ||
| Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
| Ref | Expression |
|---|---|
| ceqsex2.1 |
|
| ceqsex2.2 |
|
| ceqsex2.3 |
|
| ceqsex2.4 |
|
| ceqsex2.5 |
|
| ceqsex2.6 |
|
| Ref | Expression |
|---|---|
| ceqsex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 923 |
. . . . 5
| |
| 2 | 1 | exbii 1536 |
. . . 4
|
| 3 | 19.42v 1827 |
. . . 4
| |
| 4 | 2, 3 | bitri 182 |
. . 3
|
| 5 | 4 | exbii 1536 |
. 2
|
| 6 | nfv 1461 |
. . . . 5
| |
| 7 | ceqsex2.1 |
. . . . 5
| |
| 8 | 6, 7 | nfan 1497 |
. . . 4
|
| 9 | 8 | nfex 1568 |
. . 3
|
| 10 | ceqsex2.3 |
. . 3
| |
| 11 | ceqsex2.5 |
. . . . 5
| |
| 12 | 11 | anbi2d 451 |
. . . 4
|
| 13 | 12 | exbidv 1746 |
. . 3
|
| 14 | 9, 10, 13 | ceqsex 2637 |
. 2
|
| 15 | ceqsex2.2 |
. . 3
| |
| 16 | ceqsex2.4 |
. . 3
| |
| 17 | ceqsex2.6 |
. . 3
| |
| 18 | 15, 16, 17 | ceqsex 2637 |
. 2
|
| 19 | 5, 14, 18 | 3bitri 204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: ceqsex2v 2640 |
| Copyright terms: Public domain | W3C validator |