| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex2 | GIF version | ||
| Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.) |
| Ref | Expression |
|---|---|
| ceqsex2.1 | ⊢ Ⅎ𝑥𝜓 |
| ceqsex2.2 | ⊢ Ⅎ𝑦𝜒 |
| ceqsex2.3 | ⊢ 𝐴 ∈ V |
| ceqsex2.4 | ⊢ 𝐵 ∈ V |
| ceqsex2.5 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| ceqsex2.6 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ceqsex2 | ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 923 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) | |
| 2 | 1 | exbii 1536 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑))) |
| 3 | 19.42v 1827 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵 ∧ 𝜑)) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) | |
| 4 | 2, 3 | bitri 182 | . . 3 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) |
| 5 | 4 | exbii 1536 | . 2 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑))) |
| 6 | nfv 1461 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 = 𝐵 | |
| 7 | ceqsex2.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfan 1497 | . . . 4 ⊢ Ⅎ𝑥(𝑦 = 𝐵 ∧ 𝜓) |
| 9 | 8 | nfex 1568 | . . 3 ⊢ Ⅎ𝑥∃𝑦(𝑦 = 𝐵 ∧ 𝜓) |
| 10 | ceqsex2.3 | . . 3 ⊢ 𝐴 ∈ V | |
| 11 | ceqsex2.5 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 12 | 11 | anbi2d 451 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑦 = 𝐵 ∧ 𝜑) ↔ (𝑦 = 𝐵 ∧ 𝜓))) |
| 13 | 12 | exbidv 1746 | . . 3 ⊢ (𝑥 = 𝐴 → (∃𝑦(𝑦 = 𝐵 ∧ 𝜑) ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝜓))) |
| 14 | 9, 10, 13 | ceqsex 2637 | . 2 ⊢ (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵 ∧ 𝜑)) ↔ ∃𝑦(𝑦 = 𝐵 ∧ 𝜓)) |
| 15 | ceqsex2.2 | . . 3 ⊢ Ⅎ𝑦𝜒 | |
| 16 | ceqsex2.4 | . . 3 ⊢ 𝐵 ∈ V | |
| 17 | ceqsex2.6 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 18 | 15, 16, 17 | ceqsex 2637 | . 2 ⊢ (∃𝑦(𝑦 = 𝐵 ∧ 𝜓) ↔ 𝜒) |
| 19 | 5, 14, 18 | 3bitri 204 | 1 ⊢ (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑) ↔ 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 919 = wceq 1284 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: ceqsex2v 2640 |
| Copyright terms: Public domain | W3C validator |