| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex6v | Unicode version | ||
| Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011.) |
| Ref | Expression |
|---|---|
| ceqsex6v.1 |
|
| ceqsex6v.2 |
|
| ceqsex6v.3 |
|
| ceqsex6v.4 |
|
| ceqsex6v.5 |
|
| ceqsex6v.6 |
|
| ceqsex6v.7 |
|
| ceqsex6v.8 |
|
| ceqsex6v.9 |
|
| ceqsex6v.10 |
|
| ceqsex6v.11 |
|
| ceqsex6v.12 |
|
| Ref | Expression |
|---|---|
| ceqsex6v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anass 923 |
. . . . 5
| |
| 2 | 1 | 3exbii 1538 |
. . . 4
|
| 3 | 19.42vvv 1830 |
. . . 4
| |
| 4 | 2, 3 | bitri 182 |
. . 3
|
| 5 | 4 | 3exbii 1538 |
. 2
|
| 6 | ceqsex6v.1 |
. . . 4
| |
| 7 | ceqsex6v.2 |
. . . 4
| |
| 8 | ceqsex6v.3 |
. . . 4
| |
| 9 | ceqsex6v.7 |
. . . . . 6
| |
| 10 | 9 | anbi2d 451 |
. . . . 5
|
| 11 | 10 | 3exbidv 1790 |
. . . 4
|
| 12 | ceqsex6v.8 |
. . . . . 6
| |
| 13 | 12 | anbi2d 451 |
. . . . 5
|
| 14 | 13 | 3exbidv 1790 |
. . . 4
|
| 15 | ceqsex6v.9 |
. . . . . 6
| |
| 16 | 15 | anbi2d 451 |
. . . . 5
|
| 17 | 16 | 3exbidv 1790 |
. . . 4
|
| 18 | 6, 7, 8, 11, 14, 17 | ceqsex3v 2641 |
. . 3
|
| 19 | ceqsex6v.4 |
. . . 4
| |
| 20 | ceqsex6v.5 |
. . . 4
| |
| 21 | ceqsex6v.6 |
. . . 4
| |
| 22 | ceqsex6v.10 |
. . . 4
| |
| 23 | ceqsex6v.11 |
. . . 4
| |
| 24 | ceqsex6v.12 |
. . . 4
| |
| 25 | 19, 20, 21, 22, 23, 24 | ceqsex3v 2641 |
. . 3
|
| 26 | 18, 25 | bitri 182 |
. 2
|
| 27 | 5, 26 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |