| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex8v | Unicode version | ||
| Description: Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| Ref | Expression |
|---|---|
| ceqsex8v.1 |
|
| ceqsex8v.2 |
|
| ceqsex8v.3 |
|
| ceqsex8v.4 |
|
| ceqsex8v.5 |
|
| ceqsex8v.6 |
|
| ceqsex8v.7 |
|
| ceqsex8v.8 |
|
| ceqsex8v.9 |
|
| ceqsex8v.10 |
|
| ceqsex8v.11 |
|
| ceqsex8v.12 |
|
| ceqsex8v.13 |
|
| ceqsex8v.14 |
|
| ceqsex8v.15 |
|
| ceqsex8v.16 |
|
| Ref | Expression |
|---|---|
| ceqsex8v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42vvvv 1831 |
. . . . 5
| |
| 2 | 3anass 923 |
. . . . . . . 8
| |
| 3 | df-3an 921 |
. . . . . . . . 9
| |
| 4 | 3 | anbi2i 444 |
. . . . . . . 8
|
| 5 | 2, 4 | bitr4i 185 |
. . . . . . 7
|
| 6 | 5 | 2exbii 1537 |
. . . . . 6
|
| 7 | 6 | 2exbii 1537 |
. . . . 5
|
| 8 | df-3an 921 |
. . . . 5
| |
| 9 | 1, 7, 8 | 3bitr4i 210 |
. . . 4
|
| 10 | 9 | 2exbii 1537 |
. . 3
|
| 11 | 10 | 2exbii 1537 |
. 2
|
| 12 | ceqsex8v.1 |
. . . 4
| |
| 13 | ceqsex8v.2 |
. . . 4
| |
| 14 | ceqsex8v.3 |
. . . 4
| |
| 15 | ceqsex8v.4 |
. . . 4
| |
| 16 | ceqsex8v.9 |
. . . . . 6
| |
| 17 | 16 | 3anbi3d 1249 |
. . . . 5
|
| 18 | 17 | 4exbidv 1791 |
. . . 4
|
| 19 | ceqsex8v.10 |
. . . . . 6
| |
| 20 | 19 | 3anbi3d 1249 |
. . . . 5
|
| 21 | 20 | 4exbidv 1791 |
. . . 4
|
| 22 | ceqsex8v.11 |
. . . . . 6
| |
| 23 | 22 | 3anbi3d 1249 |
. . . . 5
|
| 24 | 23 | 4exbidv 1791 |
. . . 4
|
| 25 | ceqsex8v.12 |
. . . . . 6
| |
| 26 | 25 | 3anbi3d 1249 |
. . . . 5
|
| 27 | 26 | 4exbidv 1791 |
. . . 4
|
| 28 | 12, 13, 14, 15, 18, 21, 24, 27 | ceqsex4v 2642 |
. . 3
|
| 29 | ceqsex8v.5 |
. . . 4
| |
| 30 | ceqsex8v.6 |
. . . 4
| |
| 31 | ceqsex8v.7 |
. . . 4
| |
| 32 | ceqsex8v.8 |
. . . 4
| |
| 33 | ceqsex8v.13 |
. . . 4
| |
| 34 | ceqsex8v.14 |
. . . 4
| |
| 35 | ceqsex8v.15 |
. . . 4
| |
| 36 | ceqsex8v.16 |
. . . 4
| |
| 37 | 29, 30, 31, 32, 33, 34, 35, 36 | ceqsex4v 2642 |
. . 3
|
| 38 | 28, 37 | bitri 182 |
. 2
|
| 39 | 11, 38 | bitri 182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |