ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvjust Unicode version

Theorem cvjust 2076
Description: Every set is a class. Proposition 4.9 of [TakeutiZaring] p. 13. This theorem shows that a setvar variable can be expressed as a class abstraction. This provides a motivation for the class syntax construction cv 1283, which allows us to substitute a setvar variable for a class variable. See also cab 2067 and df-clab 2068. Note that this is not a rigorous justification, because cv 1283 is used as part of the proof of this theorem, but a careful argument can be made outside of the formalism of Metamath, for example as is done in Chapter 4 of Takeuti and Zaring. See also the discussion under the definition of class in [Jech] p. 4 showing that "Every set can be considered to be a class." (Contributed by NM, 7-Nov-2006.)
Assertion
Ref Expression
cvjust  |-  x  =  { y  |  y  e.  x }
Distinct variable group:    x, y

Proof of Theorem cvjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2075 . 2  |-  ( x  =  { y  |  y  e.  x }  <->  A. z ( z  e.  x  <->  z  e.  {
y  |  y  e.  x } ) )
2 df-clab 2068 . . 3  |-  ( z  e.  { y  |  y  e.  x }  <->  [ z  /  y ] y  e.  x )
3 elsb3 1893 . . 3  |-  ( [ z  /  y ] y  e.  x  <->  z  e.  x )
42, 3bitr2i 183 . 2  |-  ( z  e.  x  <->  z  e.  { y  |  y  e.  x } )
51, 4mpgbir 1382 1  |-  x  =  { y  |  y  e.  x }
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284    e. wcel 1433   [wsb 1685   {cab 2067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator