ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedhb Unicode version

Theorem dedhb 2761
Description: A deduction theorem for converting the inference  |-  F/_ x A =>  |-  ph into a closed theorem. Use nfa1 1474 and nfab 2223 to eliminate the hypothesis of the substitution instance  ps of the inference. For converting the inference form into a deduction form, abidnf 2760 is useful. (Contributed by NM, 8-Dec-2006.)
Hypotheses
Ref Expression
dedhb.1  |-  ( A  =  { z  | 
A. x  z  e.  A }  ->  ( ph 
<->  ps ) )
dedhb.2  |-  ps
Assertion
Ref Expression
dedhb  |-  ( F/_ x A  ->  ph )
Distinct variable groups:    x, z    z, A
Allowed substitution hints:    ph( x, z)    ps( x, z)    A( x)

Proof of Theorem dedhb
StepHypRef Expression
1 dedhb.2 . 2  |-  ps
2 abidnf 2760 . . . 4  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
32eqcomd 2086 . . 3  |-  ( F/_ x A  ->  A  =  { z  |  A. x  z  e.  A } )
4 dedhb.1 . . 3  |-  ( A  =  { z  | 
A. x  z  e.  A }  ->  ( ph 
<->  ps ) )
53, 4syl 14 . 2  |-  ( F/_ x A  ->  ( ph  <->  ps ) )
61, 5mpbiri 166 1  |-  ( F/_ x A  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   {cab 2067   F/_wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator