| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeu | Unicode version | ||
| Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
| Ref | Expression |
|---|---|
| eqeu.1 |
|
| Ref | Expression |
|---|---|
| eqeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeu.1 |
. . . . 5
| |
| 2 | 1 | spcegv 2686 |
. . . 4
|
| 3 | 2 | imp 122 |
. . 3
|
| 4 | 3 | 3adant3 958 |
. 2
|
| 5 | eqeq2 2090 |
. . . . . . 7
| |
| 6 | 5 | imbi2d 228 |
. . . . . 6
|
| 7 | 6 | albidv 1745 |
. . . . 5
|
| 8 | 7 | spcegv 2686 |
. . . 4
|
| 9 | 8 | imp 122 |
. . 3
|
| 10 | 9 | 3adant2 957 |
. 2
|
| 11 | nfv 1461 |
. . 3
| |
| 12 | 11 | eu3 1987 |
. 2
|
| 13 | 4, 10, 12 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |