ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeu Unicode version

Theorem eqeu 2762
Description: A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.)
Hypothesis
Ref Expression
eqeu.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
eqeu  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E! x ph )
Distinct variable groups:    ps, x    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem eqeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqeu.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21spcegv 2686 . . . 4  |-  ( A  e.  B  ->  ( ps  ->  E. x ph )
)
32imp 122 . . 3  |-  ( ( A  e.  B  /\  ps )  ->  E. x ph )
433adant3 958 . 2  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E. x ph )
5 eqeq2 2090 . . . . . . 7  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
65imbi2d 228 . . . . . 6  |-  ( y  =  A  ->  (
( ph  ->  x  =  y )  <->  ( ph  ->  x  =  A ) ) )
76albidv 1745 . . . . 5  |-  ( y  =  A  ->  ( A. x ( ph  ->  x  =  y )  <->  A. x
( ph  ->  x  =  A ) ) )
87spcegv 2686 . . . 4  |-  ( A  e.  B  ->  ( A. x ( ph  ->  x  =  A )  ->  E. y A. x (
ph  ->  x  =  y ) ) )
98imp 122 . . 3  |-  ( ( A  e.  B  /\  A. x ( ph  ->  x  =  A ) )  ->  E. y A. x
( ph  ->  x  =  y ) )
1093adant2 957 . 2  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E. y A. x ( ph  ->  x  =  y ) )
11 nfv 1461 . . 3  |-  F/ y
ph
1211eu3 1987 . 2  |-  ( E! x ph  <->  ( E. x ph  /\  E. y A. x ( ph  ->  x  =  y ) ) )
134, 10, 12sylanbrc 408 1  |-  ( ( A  e.  B  /\  ps  /\  A. x (
ph  ->  x  =  A ) )  ->  E! x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    /\ w3a 919   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   E!weu 1941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator