![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mpbiri | Unicode version |
Description: An inference from a nested biconditional, related to modus ponens. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 25-Oct-2012.) |
Ref | Expression |
---|---|
mpbiri.min |
![]() ![]() |
mpbiri.maj |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mpbiri |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbiri.min |
. . 3
![]() ![]() | |
2 | 1 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | mpbiri.maj |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpbird 165 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: pm5.18im 1316 dedhb 2761 sbceqal 2869 ssdifeq0 3325 pwidg 3395 elpr2 3420 snidg 3423 exsnrex 3435 rabrsndc 3460 prid1g 3496 sssnr 3545 ssprr 3548 sstpr 3549 preqr1 3560 unimax 3635 intmin3 3663 syl6eqbr 3822 pwnss 3933 0inp0 3940 bnd2 3947 euabex 3980 copsexg 3999 euotd 4009 elopab 4013 epelg 4045 sucidg 4171 regexmidlem1 4276 sucprcreg 4292 onprc 4295 dtruex 4302 omelon2 4348 elvvuni 4422 eqrelriv 4451 relopabi 4481 opabid2 4485 ididg 4507 iss 4674 funopg 4954 fn0 5038 f00 5101 f1o00 5181 fo00 5182 brprcneu 5191 relelfvdm 5226 fsn 5356 eufnfv 5410 f1eqcocnv 5451 riotaprop 5511 acexmidlemb 5524 acexmidlemab 5526 acexmidlem2 5529 oprabid 5557 elrnmpt2 5634 ov6g 5658 eqop2 5824 1stconst 5862 2ndconst 5863 dftpos3 5900 dftpos4 5901 2pwuninelg 5921 ecopover 6227 en0 6298 en1 6302 fiprc 6315 nneneq 6343 findcard 6372 findcard2 6373 findcard2s 6374 1ne0sr 6943 00sr 6946 eqlei2 7205 divcanap3 7786 nn1suc 8058 nn0ge0 8313 elnn0z 8364 nn0n0n1ge2b 8427 nn0ind-raph 8464 elnn1uz2 8694 indstr2 8696 xrnemnf 8853 xrnepnf 8854 mnfltxr 8861 nn0pnfge0 8866 xrlttr 8870 xrltso 8871 xrlttri3 8872 nltpnft 8884 ngtmnft 8885 fztpval 9100 fseq1p1m1 9111 qbtwnxr 9266 fzfig 9422 uzsinds 9428 iser0f 9472 1exp 9505 0exp 9511 bcn1 9685 sqrt0rlem 9889 0dvds 10215 fz01or 10278 nn0o 10307 flodddiv4 10334 gcddvds 10355 bezoutlemmain 10387 lcmdvds 10461 rpdvds 10481 1nprm 10496 prmind2 10502 bj-om 10732 bj-nn0suc0 10745 bj-nn0suc 10759 bj-nn0sucALT 10773 bj-findis 10774 |
Copyright terms: Public domain | W3C validator |