| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > df-bj-ind | Unicode version | ||
| Description: Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| df-bj-ind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | wind 10721 |
. 2
|
| 3 | c0 3251 |
. . . 4
| |
| 4 | 3, 1 | wcel 1433 |
. . 3
|
| 5 | vx |
. . . . . . 7
| |
| 6 | 5 | cv 1283 |
. . . . . 6
|
| 7 | 6 | csuc 4120 |
. . . . 5
|
| 8 | 7, 1 | wcel 1433 |
. . . 4
|
| 9 | 8, 5, 1 | wral 2348 |
. . 3
|
| 10 | 4, 9 | wa 102 |
. 2
|
| 11 | 2, 10 | wb 103 |
1
|
| Colors of variables: wff set class |
| This definition is referenced by: bj-indsuc 10723 bj-indeq 10724 bj-bdind 10725 bj-indint 10726 bj-indind 10727 bj-dfom 10728 bj-inf2vnlem1 10765 bj-inf2vnlem2 10766 |
| Copyright terms: Public domain | W3C validator |