Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vnlem1 Unicode version

Theorem bj-inf2vnlem1 10765
Description: Lemma for bj-inf2vn 10769. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inf2vnlem1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Distinct variable group:    x, A, y

Proof of Theorem bj-inf2vnlem1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bi2 128 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  ->  x  e.  A ) )
2 jaob 663 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  <->  ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
32biimpi 118 . . . . 5  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( (
x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )
) )
4 simpl 107 . . . . . 6  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  ->  x  e.  A ) )
5 eleq1 2141 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  A  <->  (/)  e.  A
) )
64, 5mpbidi 149 . . . . 5  |-  ( ( ( x  =  (/)  ->  x  e.  A )  /\  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
71, 3, 63syl 17 . . . 4  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  =  (/)  -> 
(/)  e.  A )
)
87alimi 1384 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  =  (/)  ->  (/)  e.  A ) )
9 exim 1530 . . 3  |-  ( A. x ( x  =  (/)  ->  (/)  e.  A )  ->  ( E. x  x  =  (/)  ->  E. x (/) 
e.  A ) )
10 0ex 3905 . . . . . 6  |-  (/)  e.  _V
1110isseti 2607 . . . . 5  |-  E. x  x  =  (/)
12 pm2.27 39 . . . . 5  |-  ( E. x  x  =  (/)  ->  ( ( E. x  x  =  (/)  ->  E. x (/) 
e.  A )  ->  E. x (/)  e.  A
) )
1311, 12ax-mp 7 . . . 4  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  E. x (/) 
e.  A )
14 bj-ex 10573 . . . 4  |-  ( E. x (/)  e.  A  -> 
(/)  e.  A )
1513, 14syl 14 . . 3  |-  ( ( E. x  x  =  (/)  ->  E. x (/)  e.  A
)  ->  (/)  e.  A
)
168, 9, 153syl 17 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  (/) 
e.  A )
173simprd 112 . . . . . 6  |-  ( ( ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y )  ->  x  e.  A
)  ->  ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
181, 17syl 14 . . . . 5  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( E. y  e.  A  x  =  suc  y  ->  x  e.  A
) )
1918alimi 1384 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A ) )
20 eqid 2081 . . . . 5  |-  suc  z  =  suc  z
21 suceq 4157 . . . . . . 7  |-  ( y  =  z  ->  suc  y  =  suc  z )
2221eqeq2d 2092 . . . . . 6  |-  ( y  =  z  ->  ( suc  z  =  suc  y 
<->  suc  z  =  suc  z ) )
2322rspcev 2701 . . . . 5  |-  ( ( z  e.  A  /\  suc  z  =  suc  z )  ->  E. y  e.  A  suc  z  =  suc  y )
2420, 23mpan2 415 . . . 4  |-  ( z  e.  A  ->  E. y  e.  A  suc  z  =  suc  y )
25 vex 2604 . . . . . 6  |-  z  e. 
_V
2625bj-sucex 10714 . . . . 5  |-  suc  z  e.  _V
27 eqeq1 2087 . . . . . . 7  |-  ( x  =  suc  z  -> 
( x  =  suc  y 
<->  suc  z  =  suc  y ) )
2827rexbidv 2369 . . . . . 6  |-  ( x  =  suc  z  -> 
( E. y  e.  A  x  =  suc  y 
<->  E. y  e.  A  suc  z  =  suc  y ) )
29 eleq1 2141 . . . . . 6  |-  ( x  =  suc  z  -> 
( x  e.  A  <->  suc  z  e.  A ) )
3028, 29imbi12d 232 . . . . 5  |-  ( x  =  suc  z  -> 
( ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  <->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A
) ) )
3126, 30spcv 2691 . . . 4  |-  ( A. x ( E. y  e.  A  x  =  suc  y  ->  x  e.  A )  ->  ( E. y  e.  A  suc  z  =  suc  y  ->  suc  z  e.  A ) )
3219, 24, 31syl2im 38 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( z  e.  A  ->  suc  z  e.  A
) )
3332ralrimiv 2433 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z  e.  A  suc  z  e.  A
)
34 df-bj-ind 10722 . 2  |-  (Ind  A  <->  (
(/)  e.  A  /\  A. z  e.  A  suc  z  e.  A )
)
3516, 33, 34sylanbrc 408 1  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   A.wral 2348   E.wrex 2349   (/)c0 3251   suc csuc 4120  Ind wind 10721
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904  ax-pr 3964  ax-un 4188  ax-bd0 10604  ax-bdor 10607  ax-bdex 10610  ax-bdeq 10611  ax-bdel 10612  ax-bdsb 10613  ax-bdsep 10675
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-dif 2975  df-un 2977  df-nul 3252  df-sn 3404  df-pr 3405  df-uni 3602  df-suc 4126  df-bdc 10632  df-bj-ind 10722
This theorem is referenced by:  bj-inf2vn  10769  bj-inf2vn2  10770
  Copyright terms: Public domain W3C validator