| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vnlem1 | Unicode version | ||
| Description: Lemma for bj-inf2vn 10769. Remark: unoptimized proof (have to use more deduction style). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inf2vnlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi2 128 |
. . . . 5
| |
| 2 | jaob 663 |
. . . . . 6
| |
| 3 | 2 | biimpi 118 |
. . . . 5
|
| 4 | simpl 107 |
. . . . . 6
| |
| 5 | eleq1 2141 |
. . . . . 6
| |
| 6 | 4, 5 | mpbidi 149 |
. . . . 5
|
| 7 | 1, 3, 6 | 3syl 17 |
. . . 4
|
| 8 | 7 | alimi 1384 |
. . 3
|
| 9 | exim 1530 |
. . 3
| |
| 10 | 0ex 3905 |
. . . . . 6
| |
| 11 | 10 | isseti 2607 |
. . . . 5
|
| 12 | pm2.27 39 |
. . . . 5
| |
| 13 | 11, 12 | ax-mp 7 |
. . . 4
|
| 14 | bj-ex 10573 |
. . . 4
| |
| 15 | 13, 14 | syl 14 |
. . 3
|
| 16 | 8, 9, 15 | 3syl 17 |
. 2
|
| 17 | 3 | simprd 112 |
. . . . . 6
|
| 18 | 1, 17 | syl 14 |
. . . . 5
|
| 19 | 18 | alimi 1384 |
. . . 4
|
| 20 | eqid 2081 |
. . . . 5
| |
| 21 | suceq 4157 |
. . . . . . 7
| |
| 22 | 21 | eqeq2d 2092 |
. . . . . 6
|
| 23 | 22 | rspcev 2701 |
. . . . 5
|
| 24 | 20, 23 | mpan2 415 |
. . . 4
|
| 25 | vex 2604 |
. . . . . 6
| |
| 26 | 25 | bj-sucex 10714 |
. . . . 5
|
| 27 | eqeq1 2087 |
. . . . . . 7
| |
| 28 | 27 | rexbidv 2369 |
. . . . . 6
|
| 29 | eleq1 2141 |
. . . . . 6
| |
| 30 | 28, 29 | imbi12d 232 |
. . . . 5
|
| 31 | 26, 30 | spcv 2691 |
. . . 4
|
| 32 | 19, 24, 31 | syl2im 38 |
. . 3
|
| 33 | 32 | ralrimiv 2433 |
. 2
|
| 34 | df-bj-ind 10722 |
. 2
| |
| 35 | 16, 33, 34 | sylanbrc 408 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-nul 3904 ax-pr 3964 ax-un 4188 ax-bd0 10604 ax-bdor 10607 ax-bdex 10610 ax-bdeq 10611 ax-bdel 10612 ax-bdsb 10613 ax-bdsep 10675 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-nul 3252 df-sn 3404 df-pr 3405 df-uni 3602 df-suc 4126 df-bdc 10632 df-bj-ind 10722 |
| This theorem is referenced by: bj-inf2vn 10769 bj-inf2vn2 10770 |
| Copyright terms: Public domain | W3C validator |