| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-indeq | Unicode version | ||
| Description: Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-indeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-ind 10722 |
. 2
| |
| 2 | df-bj-ind 10722 |
. . 3
| |
| 3 | eleq2 2142 |
. . . . 5
| |
| 4 | 3 | bicomd 139 |
. . . 4
|
| 5 | eleq2 2142 |
. . . . . 6
| |
| 6 | 5 | raleqbi1dv 2557 |
. . . . 5
|
| 7 | 6 | bicomd 139 |
. . . 4
|
| 8 | 4, 7 | anbi12d 456 |
. . 3
|
| 9 | 2, 8 | syl5rbb 191 |
. 2
|
| 10 | 1, 9 | syl5bb 190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-bj-ind 10722 |
| This theorem is referenced by: bj-omind 10729 bj-omssind 10730 bj-ssom 10731 bj-om 10732 bj-2inf 10733 |
| Copyright terms: Public domain | W3C validator |