ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrn2 Unicode version

Theorem dfrn2 4541
Description: Alternate definition of range. Definition 4 of [Suppes] p. 60. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
dfrn2  |-  ran  A  =  { y  |  E. x  x A y }
Distinct variable group:    x, y, A

Proof of Theorem dfrn2
StepHypRef Expression
1 df-rn 4374 . 2  |-  ran  A  =  dom  `' A
2 df-dm 4373 . 2  |-  dom  `' A  =  { y  |  E. x  y `' A x }
3 vex 2604 . . . . 5  |-  y  e. 
_V
4 vex 2604 . . . . 5  |-  x  e. 
_V
53, 4brcnv 4536 . . . 4  |-  ( y `' A x  <->  x A
y )
65exbii 1536 . . 3  |-  ( E. x  y `' A x 
<->  E. x  x A y )
76abbii 2194 . 2  |-  { y  |  E. x  y `' A x }  =  { y  |  E. x  x A y }
81, 2, 73eqtri 2105 1  |-  ran  A  =  { y  |  E. x  x A y }
Colors of variables: wff set class
Syntax hints:    = wceq 1284   E.wex 1421   {cab 2067   class class class wbr 3785   `'ccnv 4362   dom cdm 4363   ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by:  dfrn3  4542  dfdm4  4545  dm0rn0  4570  dmmrnm  4572  dfrnf  4593  dfima2  4690  funcnv3  4981
  Copyright terms: Public domain W3C validator