ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difeq2i Unicode version

Theorem difeq2i 3087
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
Hypothesis
Ref Expression
difeq1i.1  |-  A  =  B
Assertion
Ref Expression
difeq2i  |-  ( C 
\  A )  =  ( C  \  B
)

Proof of Theorem difeq2i
StepHypRef Expression
1 difeq1i.1 . 2  |-  A  =  B
2 difeq2 3084 . 2  |-  ( A  =  B  ->  ( C  \  A )  =  ( C  \  B
) )
31, 2ax-mp 7 1  |-  ( C 
\  A )  =  ( C  \  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1284    \ cdif 2970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-ral 2353  df-rab 2357  df-dif 2975
This theorem is referenced by:  difeq12i  3088  inssddif  3205  difdif2ss  3221  dif32  3227  difabs  3228  symdif1  3229  notrab  3241  dif0  3314  difdifdirss  3327  dfif3  3364  dif1o  6044
  Copyright terms: Public domain W3C validator