| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfif3 | Unicode version | ||
| Description: Alternate definition of
the conditional operator df-if 3352. Note that
|
| Ref | Expression |
|---|---|
| dfif3.1 |
|
| Ref | Expression |
|---|---|
| dfif3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfif6 3353 |
. 2
| |
| 2 | dfif3.1 |
. . . . . 6
| |
| 3 | biidd 170 |
. . . . . . 7
| |
| 4 | 3 | cbvabv 2202 |
. . . . . 6
|
| 5 | 2, 4 | eqtri 2101 |
. . . . 5
|
| 6 | 5 | ineq2i 3164 |
. . . 4
|
| 7 | dfrab3 3240 |
. . . 4
| |
| 8 | 6, 7 | eqtr4i 2104 |
. . 3
|
| 9 | dfrab3 3240 |
. . . 4
| |
| 10 | notab 3234 |
. . . . . 6
| |
| 11 | 5 | difeq2i 3087 |
. . . . . 6
|
| 12 | 10, 11 | eqtr4i 2104 |
. . . . 5
|
| 13 | 12 | ineq2i 3164 |
. . . 4
|
| 14 | 9, 13 | eqtr2i 2102 |
. . 3
|
| 15 | 8, 14 | uneq12i 3124 |
. 2
|
| 16 | 1, 15 | eqtr4i 2104 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-if 3352 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |