ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difdif2ss Unicode version

Theorem difdif2ss 3221
Description: Set difference with a set difference. In classical logic this would be equality rather than subset. (Contributed by Jim Kingdon, 27-Jul-2018.)
Assertion
Ref Expression
difdif2ss  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )

Proof of Theorem difdif2ss
StepHypRef Expression
1 inssdif 3200 . . . 4  |-  ( A  i^i  C )  C_  ( A  \  ( _V  \  C ) )
2 unss2 3143 . . . 4  |-  ( ( A  i^i  C ) 
C_  ( A  \ 
( _V  \  C
) )  ->  (
( A  \  B
)  u.  ( A  i^i  C ) ) 
C_  ( ( A 
\  B )  u.  ( A  \  ( _V  \  C ) ) ) )
31, 2ax-mp 7 . . 3  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  (
( A  \  B
)  u.  ( A 
\  ( _V  \  C ) ) )
4 difindiss 3218 . . 3  |-  ( ( A  \  B )  u.  ( A  \ 
( _V  \  C
) ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
53, 4sstri 3008 . 2  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  i^i  ( _V  \  C ) ) )
6 invdif 3206 . . . 4  |-  ( B  i^i  ( _V  \  C ) )  =  ( B  \  C
)
76eqcomi 2085 . . 3  |-  ( B 
\  C )  =  ( B  i^i  ( _V  \  C ) )
87difeq2i 3087 . 2  |-  ( A 
\  ( B  \  C ) )  =  ( A  \  ( B  i^i  ( _V  \  C ) ) )
95, 8sseqtr4i 3032 1  |-  ( ( A  \  B )  u.  ( A  i^i  C ) )  C_  ( A  \  ( B  \  C ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2601    \ cdif 2970    u. cun 2971    i^i cin 2972    C_ wss 2973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator