| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > difrab | Unicode version | ||
| Description: Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
| Ref | Expression |
|---|---|
| difrab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 2357 |
. . 3
| |
| 2 | df-rab 2357 |
. . 3
| |
| 3 | 1, 2 | difeq12i 3088 |
. 2
|
| 4 | df-rab 2357 |
. . 3
| |
| 5 | difab 3233 |
. . . 4
| |
| 6 | anass 393 |
. . . . . 6
| |
| 7 | simpr 108 |
. . . . . . . . 9
| |
| 8 | 7 | con3i 594 |
. . . . . . . 8
|
| 9 | 8 | anim2i 334 |
. . . . . . 7
|
| 10 | pm3.2 137 |
. . . . . . . . . 10
| |
| 11 | 10 | adantr 270 |
. . . . . . . . 9
|
| 12 | 11 | con3d 593 |
. . . . . . . 8
|
| 13 | 12 | imdistani 433 |
. . . . . . 7
|
| 14 | 9, 13 | impbii 124 |
. . . . . 6
|
| 15 | 6, 14 | bitr3i 184 |
. . . . 5
|
| 16 | 15 | abbii 2194 |
. . . 4
|
| 17 | 5, 16 | eqtr4i 2104 |
. . 3
|
| 18 | 4, 17 | eqtr4i 2104 |
. 2
|
| 19 | 3, 18 | eqtr4i 2104 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rab 2357 df-v 2603 df-dif 2975 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |