ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrab2 Unicode version

Theorem dfrab2 3239
Description: Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
dfrab2  |-  { x  e.  A  |  ph }  =  ( { x  |  ph }  i^i  A
)
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem dfrab2
StepHypRef Expression
1 df-rab 2357 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
2 inab 3232 . . 3  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  { x  |  ( x  e.  A  /\  ph ) }
3 abid2 2199 . . . 4  |-  { x  |  x  e.  A }  =  A
43ineq1i 3163 . . 3  |-  ( { x  |  x  e.  A }  i^i  {
x  |  ph }
)  =  ( A  i^i  { x  | 
ph } )
52, 4eqtr3i 2103 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  =  ( A  i^i  { x  |  ph } )
6 incom 3158 . 2  |-  ( A  i^i  { x  | 
ph } )  =  ( { x  | 
ph }  i^i  A
)
71, 5, 63eqtri 2105 1  |-  { x  e.  A  |  ph }  =  ( { x  |  ph }  i^i  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 102    = wceq 1284    e. wcel 1433   {cab 2067   {crab 2352    i^i cin 2972
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-in 2979
This theorem is referenced by:  minmax  10112
  Copyright terms: Public domain W3C validator