| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq2 | Unicode version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1 4683 |
. 2
| |
| 2 | df-ec 6131 |
. 2
| |
| 3 | df-ec 6131 |
. 2
| |
| 4 | 1, 2, 3 | 3eqtr4g 2138 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-ec 6131 |
| This theorem is referenced by: qseq2 6178 nqnq0pi 6628 |
| Copyright terms: Public domain | W3C validator |