| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elab3gf | Unicode version | ||
| Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2736. (Contributed by NM, 6-Sep-2011.) |
| Ref | Expression |
|---|---|
| elab3gf.1 |
|
| elab3gf.2 |
|
| elab3gf.3 |
|
| Ref | Expression |
|---|---|
| elab3gf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3gf.1 |
. . . 4
| |
| 2 | elab3gf.2 |
. . . 4
| |
| 3 | elab3gf.3 |
. . . 4
| |
| 4 | 1, 2, 3 | elabgf 2736 |
. . 3
|
| 5 | 4 | ibi 174 |
. 2
|
| 6 | 1, 2, 3 | elabgf 2736 |
. . . 4
|
| 7 | 6 | imim2i 12 |
. . 3
|
| 8 | bi2 128 |
. . 3
| |
| 9 | 7, 8 | syli 37 |
. 2
|
| 10 | 5, 9 | impbid2 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 |
| This theorem is referenced by: elab3g 2744 |
| Copyright terms: Public domain | W3C validator |