| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elabrex | Unicode version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 14-Jan-2014.) |
| Ref | Expression |
|---|---|
| elabrex.1 |
|
| Ref | Expression |
|---|---|
| elabrex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1288 |
. . . 4
| |
| 2 | csbeq1a 2916 |
. . . . . . 7
| |
| 3 | 2 | equcoms 1634 |
. . . . . 6
|
| 4 | a1tru 1300 |
. . . . . 6
| |
| 5 | 3, 4 | 2thd 173 |
. . . . 5
|
| 6 | 5 | rspcev 2701 |
. . . 4
|
| 7 | 1, 6 | mpan2 415 |
. . 3
|
| 8 | elabrex.1 |
. . . 4
| |
| 9 | eqeq1 2087 |
. . . . 5
| |
| 10 | 9 | rexbidv 2369 |
. . . 4
|
| 11 | 8, 10 | elab 2738 |
. . 3
|
| 12 | 7, 11 | sylibr 132 |
. 2
|
| 13 | nfv 1461 |
. . . 4
| |
| 14 | nfcsb1v 2938 |
. . . . 5
| |
| 15 | 14 | nfeq2 2230 |
. . . 4
|
| 16 | 2 | eqeq2d 2092 |
. . . 4
|
| 17 | 13, 15, 16 | cbvrex 2574 |
. . 3
|
| 18 | 17 | abbii 2194 |
. 2
|
| 19 | 12, 18 | syl6eleqr 2172 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 |
| This theorem is referenced by: eusvobj2 5518 |
| Copyright terms: Public domain | W3C validator |