| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eusvobj2 | Unicode version | ||
| Description: Specify the same property
in two ways when class |
| Ref | Expression |
|---|---|
| eusvobj1.1 |
|
| Ref | Expression |
|---|---|
| eusvobj2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euabsn2 3461 |
. . 3
| |
| 2 | eleq2 2142 |
. . . . . 6
| |
| 3 | abid 2069 |
. . . . . 6
| |
| 4 | velsn 3415 |
. . . . . 6
| |
| 5 | 2, 3, 4 | 3bitr3g 220 |
. . . . 5
|
| 6 | nfre1 2407 |
. . . . . . . . 9
| |
| 7 | 6 | nfab 2223 |
. . . . . . . 8
|
| 8 | 7 | nfeq1 2228 |
. . . . . . 7
|
| 9 | eusvobj1.1 |
. . . . . . . . 9
| |
| 10 | 9 | elabrex 5418 |
. . . . . . . 8
|
| 11 | eleq2 2142 |
. . . . . . . . 9
| |
| 12 | 9 | elsn 3414 |
. . . . . . . . . 10
|
| 13 | eqcom 2083 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | bitri 182 |
. . . . . . . . 9
|
| 15 | 11, 14 | syl6bb 194 |
. . . . . . . 8
|
| 16 | 10, 15 | syl5ib 152 |
. . . . . . 7
|
| 17 | 8, 16 | ralrimi 2432 |
. . . . . 6
|
| 18 | eqeq1 2087 |
. . . . . . 7
| |
| 19 | 18 | ralbidv 2368 |
. . . . . 6
|
| 20 | 17, 19 | syl5ibrcom 155 |
. . . . 5
|
| 21 | 5, 20 | sylbid 148 |
. . . 4
|
| 22 | 21 | exlimiv 1529 |
. . 3
|
| 23 | 1, 22 | sylbi 119 |
. 2
|
| 24 | euex 1971 |
. . 3
| |
| 25 | rexm 3340 |
. . . 4
| |
| 26 | 25 | exlimiv 1529 |
. . 3
|
| 27 | r19.2m 3329 |
. . . 4
| |
| 28 | 27 | ex 113 |
. . 3
|
| 29 | 24, 26, 28 | 3syl 17 |
. 2
|
| 30 | 23, 29 | impbid 127 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-csb 2909 df-sn 3404 |
| This theorem is referenced by: eusvobj1 5519 |
| Copyright terms: Public domain | W3C validator |