ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldifbd Unicode version

Theorem eldifbd 2985
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 2982. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
eldifbd.1  |-  ( ph  ->  A  e.  ( B 
\  C ) )
Assertion
Ref Expression
eldifbd  |-  ( ph  ->  -.  A  e.  C
)

Proof of Theorem eldifbd
StepHypRef Expression
1 eldifbd.1 . . 3  |-  ( ph  ->  A  e.  ( B 
\  C ) )
2 eldif 2982 . . 3  |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
31, 2sylib 120 . 2  |-  ( ph  ->  ( A  e.  B  /\  -.  A  e.  C
) )
43simprd 112 1  |-  ( ph  ->  -.  A  e.  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    e. wcel 1433    \ cdif 2970
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975
This theorem is referenced by:  fidifsnen  6355  fiunsnnn  6365  fnfi  6388
  Copyright terms: Public domain W3C validator