| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fidifsnen | Unicode version | ||
| Description: All decrements of a finite set are equinumerous. (Contributed by Jim Kingdon, 9-Sep-2021.) |
| Ref | Expression |
|---|---|
| fidifsnen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difexg 3919 |
. . . . . 6
| |
| 2 | 1 | 3ad2ant1 959 |
. . . . 5
|
| 3 | 2 | adantr 270 |
. . . 4
|
| 4 | enrefg 6267 |
. . . 4
| |
| 5 | 3, 4 | syl 14 |
. . 3
|
| 6 | sneq 3409 |
. . . . 5
| |
| 7 | 6 | difeq2d 3090 |
. . . 4
|
| 8 | 7 | adantl 271 |
. . 3
|
| 9 | 5, 8 | breqtrd 3809 |
. 2
|
| 10 | 2 | adantr 270 |
. . 3
|
| 11 | eqid 2081 |
. . . 4
| |
| 12 | iftrue 3356 |
. . . . . . . 8
| |
| 13 | 12 | adantl 271 |
. . . . . . 7
|
| 14 | simpll2 978 |
. . . . . . . 8
| |
| 15 | 14 | adantr 270 |
. . . . . . 7
|
| 16 | 13, 15 | eqeltrd 2155 |
. . . . . 6
|
| 17 | simpllr 500 |
. . . . . . . 8
| |
| 18 | 13 | eqeq1d 2089 |
. . . . . . . 8
|
| 19 | 17, 18 | mtbird 630 |
. . . . . . 7
|
| 20 | 19 | neneqad 2324 |
. . . . . 6
|
| 21 | eldifsn 3517 |
. . . . . 6
| |
| 22 | 16, 20, 21 | sylanbrc 408 |
. . . . 5
|
| 23 | iffalse 3359 |
. . . . . . . 8
| |
| 24 | 23 | adantl 271 |
. . . . . . 7
|
| 25 | eldifi 3094 |
. . . . . . . 8
| |
| 26 | 25 | ad2antlr 472 |
. . . . . . 7
|
| 27 | 24, 26 | eqeltrd 2155 |
. . . . . 6
|
| 28 | simpr 108 |
. . . . . . . 8
| |
| 29 | 24 | eqeq1d 2089 |
. . . . . . . 8
|
| 30 | 28, 29 | mtbird 630 |
. . . . . . 7
|
| 31 | 30 | neneqad 2324 |
. . . . . 6
|
| 32 | 27, 31, 21 | sylanbrc 408 |
. . . . 5
|
| 33 | simpll1 977 |
. . . . . . 7
| |
| 34 | 25 | adantl 271 |
. . . . . . 7
|
| 35 | simpll3 979 |
. . . . . . 7
| |
| 36 | fidceq 6354 |
. . . . . . 7
| |
| 37 | 33, 34, 35, 36 | syl3anc 1169 |
. . . . . 6
|
| 38 | exmiddc 777 |
. . . . . 6
| |
| 39 | 37, 38 | syl 14 |
. . . . 5
|
| 40 | 22, 32, 39 | mpjaodan 744 |
. . . 4
|
| 41 | iftrue 3356 |
. . . . . . 7
| |
| 42 | 41 | adantl 271 |
. . . . . 6
|
| 43 | simpl3 943 |
. . . . . . . 8
| |
| 44 | simpr 108 |
. . . . . . . . . 10
| |
| 45 | 44 | neneqad 2324 |
. . . . . . . . 9
|
| 46 | 45 | necomd 2331 |
. . . . . . . 8
|
| 47 | eldifsn 3517 |
. . . . . . . 8
| |
| 48 | 43, 46, 47 | sylanbrc 408 |
. . . . . . 7
|
| 49 | 48 | ad2antrr 471 |
. . . . . 6
|
| 50 | 42, 49 | eqeltrd 2155 |
. . . . 5
|
| 51 | iffalse 3359 |
. . . . . . 7
| |
| 52 | 51 | adantl 271 |
. . . . . 6
|
| 53 | eldifi 3094 |
. . . . . . . 8
| |
| 54 | 53 | ad2antlr 472 |
. . . . . . 7
|
| 55 | simpr 108 |
. . . . . . . 8
| |
| 56 | 55 | neneqad 2324 |
. . . . . . 7
|
| 57 | eldifsn 3517 |
. . . . . . 7
| |
| 58 | 54, 56, 57 | sylanbrc 408 |
. . . . . 6
|
| 59 | 52, 58 | eqeltrd 2155 |
. . . . 5
|
| 60 | simpll1 977 |
. . . . . . 7
| |
| 61 | 53 | adantl 271 |
. . . . . . 7
|
| 62 | simpll2 978 |
. . . . . . 7
| |
| 63 | fidceq 6354 |
. . . . . . 7
| |
| 64 | 60, 61, 62, 63 | syl3anc 1169 |
. . . . . 6
|
| 65 | exmiddc 777 |
. . . . . 6
| |
| 66 | 64, 65 | syl 14 |
. . . . 5
|
| 67 | 50, 59, 66 | mpjaodan 744 |
. . . 4
|
| 68 | 12 | adantl 271 |
. . . . . . . . . 10
|
| 69 | 68 | eqeq2d 2092 |
. . . . . . . . 9
|
| 70 | 69 | biimpar 291 |
. . . . . . . 8
|
| 71 | 70 | a1d 22 |
. . . . . . 7
|
| 72 | simpr 108 |
. . . . . . . . . . 11
| |
| 73 | 51 | eqeq2d 2092 |
. . . . . . . . . . . 12
|
| 74 | 73 | ad2antlr 472 |
. . . . . . . . . . 11
|
| 75 | 72, 74 | mpbid 145 |
. . . . . . . . . 10
|
| 76 | simpllr 500 |
. . . . . . . . . 10
| |
| 77 | 75, 76 | eqtr3d 2115 |
. . . . . . . . 9
|
| 78 | simprr 498 |
. . . . . . . . . . . . 13
| |
| 79 | 78 | ad2antrr 471 |
. . . . . . . . . . . 12
|
| 80 | 79 | eldifbd 2985 |
. . . . . . . . . . 11
|
| 81 | 80 | adantr 270 |
. . . . . . . . . 10
|
| 82 | velsn 3415 |
. . . . . . . . . 10
| |
| 83 | 81, 82 | sylnib 633 |
. . . . . . . . 9
|
| 84 | 77, 83 | pm2.21dd 582 |
. . . . . . . 8
|
| 85 | 84 | ex 113 |
. . . . . . 7
|
| 86 | simpll1 977 |
. . . . . . . . . 10
| |
| 87 | 53 | ad2antll 474 |
. . . . . . . . . 10
|
| 88 | simpll2 978 |
. . . . . . . . . 10
| |
| 89 | 86, 87, 88, 63 | syl3anc 1169 |
. . . . . . . . 9
|
| 90 | 89, 65 | syl 14 |
. . . . . . . 8
|
| 91 | 90 | adantr 270 |
. . . . . . 7
|
| 92 | 71, 85, 91 | mpjaodan 744 |
. . . . . 6
|
| 93 | 41 | eqeq2d 2092 |
. . . . . . . . 9
|
| 94 | 93 | biimprcd 158 |
. . . . . . . 8
|
| 95 | 94 | adantl 271 |
. . . . . . 7
|
| 96 | 69, 95 | sylbid 148 |
. . . . . 6
|
| 97 | 92, 96 | impbid 127 |
. . . . 5
|
| 98 | simplr 496 |
. . . . . . . . 9
| |
| 99 | 41 | adantl 271 |
. . . . . . . . 9
|
| 100 | 98, 99 | eqtrd 2113 |
. . . . . . . 8
|
| 101 | simpllr 500 |
. . . . . . . 8
| |
| 102 | 100, 101 | pm2.21dd 582 |
. . . . . . 7
|
| 103 | 23 | ad3antlr 476 |
. . . . . . . 8
|
| 104 | simplr 496 |
. . . . . . . . 9
| |
| 105 | 51 | adantl 271 |
. . . . . . . . 9
|
| 106 | 104, 105 | eqtrd 2113 |
. . . . . . . 8
|
| 107 | 103, 106 | eqtr2d 2114 |
. . . . . . 7
|
| 108 | 90 | ad2antrr 471 |
. . . . . . 7
|
| 109 | 102, 107, 108 | mpjaodan 744 |
. . . . . 6
|
| 110 | simprl 497 |
. . . . . . . . . . . 12
| |
| 111 | 110 | eldifbd 2985 |
. . . . . . . . . . 11
|
| 112 | velsn 3415 |
. . . . . . . . . . 11
| |
| 113 | 111, 112 | sylnib 633 |
. . . . . . . . . 10
|
| 114 | 113 | ad2antrr 471 |
. . . . . . . . 9
|
| 115 | simpr 108 |
. . . . . . . . . . 11
| |
| 116 | 23 | eqeq2d 2092 |
. . . . . . . . . . . 12
|
| 117 | 116 | ad2antlr 472 |
. . . . . . . . . . 11
|
| 118 | 115, 117 | mpbid 145 |
. . . . . . . . . 10
|
| 119 | 118 | eqeq1d 2089 |
. . . . . . . . 9
|
| 120 | 114, 119 | mtbird 630 |
. . . . . . . 8
|
| 121 | 120, 51 | syl 14 |
. . . . . . 7
|
| 122 | 121, 118 | eqtr2d 2114 |
. . . . . 6
|
| 123 | 109, 122 | impbida 560 |
. . . . 5
|
| 124 | 39 | adantrr 462 |
. . . . 5
|
| 125 | 97, 123, 124 | mpjaodan 744 |
. . . 4
|
| 126 | 11, 40, 67, 125 | f1o2d 5725 |
. . 3
|
| 127 | f1oeng 6260 |
. . 3
| |
| 128 | 10, 126, 127 | syl2anc 403 |
. 2
|
| 129 | fidceq 6354 |
. . 3
| |
| 130 | exmiddc 777 |
. . 3
| |
| 131 | 129, 130 | syl 14 |
. 2
|
| 132 | 9, 128, 131 | mpjaodan 744 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-coll 3893 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-iinf 4329 |
| This theorem depends on definitions: df-bi 115 df-dc 776 df-3or 920 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-csb 2909 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-iun 3680 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-iom 4332 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-fv 4930 df-en 6245 df-fin 6247 |
| This theorem is referenced by: dif1en 6364 |
| Copyright terms: Public domain | W3C validator |