ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elintab Unicode version

Theorem elintab 3647
Description: Membership in the intersection of a class abstraction. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
inteqab.1  |-  A  e. 
_V
Assertion
Ref Expression
elintab  |-  ( A  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  e.  x ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem elintab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 inteqab.1 . . 3  |-  A  e. 
_V
21elint 3642 . 2  |-  ( A  e.  |^| { x  | 
ph }  <->  A. y
( y  e.  {
x  |  ph }  ->  A  e.  y ) )
3 nfsab1 2071 . . . 4  |-  F/ x  y  e.  { x  |  ph }
4 nfv 1461 . . . 4  |-  F/ x  A  e.  y
53, 4nfim 1504 . . 3  |-  F/ x
( y  e.  {
x  |  ph }  ->  A  e.  y )
6 nfv 1461 . . 3  |-  F/ y ( ph  ->  A  e.  x )
7 eleq1 2141 . . . . 5  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
8 abid 2069 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
97, 8syl6bb 194 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
10 eleq2 2142 . . . 4  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
119, 10imbi12d 232 . . 3  |-  ( y  =  x  ->  (
( y  e.  {
x  |  ph }  ->  A  e.  y )  <-> 
( ph  ->  A  e.  x ) ) )
125, 6, 11cbval 1677 . 2  |-  ( A. y ( y  e. 
{ x  |  ph }  ->  A  e.  y )  <->  A. x ( ph  ->  A  e.  x ) )
132, 12bitri 182 1  |-  ( A  e.  |^| { x  | 
ph }  <->  A. x
( ph  ->  A  e.  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1282    e. wcel 1433   {cab 2067   _Vcvv 2601   |^|cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-int 3637
This theorem is referenced by:  elintrab  3648  intmin4  3664  intab  3665  intid  3979
  Copyright terms: Public domain W3C validator