ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intab Unicode version

Theorem intab 3665
Description: The intersection of a special case of a class abstraction. 
y may be free in  ph and  A, which can be thought of a  ph ( y ) and  A ( y ). (Contributed by NM, 28-Jul-2006.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
intab.1  |-  A  e. 
_V
intab.2  |-  { x  |  E. y ( ph  /\  x  =  A ) }  e.  _V
Assertion
Ref Expression
intab  |-  |^| { x  |  A. y ( ph  ->  A  e.  x ) }  =  { x  |  E. y ( ph  /\  x  =  A ) }
Distinct variable groups:    x, A    ph, x    x, y
Allowed substitution hints:    ph( y)    A( y)

Proof of Theorem intab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2087 . . . . . . . . . 10  |-  ( z  =  x  ->  (
z  =  A  <->  x  =  A ) )
21anbi2d 451 . . . . . . . . 9  |-  ( z  =  x  ->  (
( ph  /\  z  =  A )  <->  ( ph  /\  x  =  A ) ) )
32exbidv 1746 . . . . . . . 8  |-  ( z  =  x  ->  ( E. y ( ph  /\  z  =  A )  <->  E. y ( ph  /\  x  =  A )
) )
43cbvabv 2202 . . . . . . 7  |-  { z  |  E. y (
ph  /\  z  =  A ) }  =  { x  |  E. y ( ph  /\  x  =  A ) }
5 intab.2 . . . . . . 7  |-  { x  |  E. y ( ph  /\  x  =  A ) }  e.  _V
64, 5eqeltri 2151 . . . . . 6  |-  { z  |  E. y (
ph  /\  z  =  A ) }  e.  _V
7 nfe1 1425 . . . . . . . . 9  |-  F/ y E. y ( ph  /\  z  =  A )
87nfab 2223 . . . . . . . 8  |-  F/_ y { z  |  E. y ( ph  /\  z  =  A ) }
98nfeq2 2230 . . . . . . 7  |-  F/ y  x  =  { z  |  E. y (
ph  /\  z  =  A ) }
10 eleq2 2142 . . . . . . . 8  |-  ( x  =  { z  |  E. y ( ph  /\  z  =  A ) }  ->  ( A  e.  x  <->  A  e.  { z  |  E. y (
ph  /\  z  =  A ) } ) )
1110imbi2d 228 . . . . . . 7  |-  ( x  =  { z  |  E. y ( ph  /\  z  =  A ) }  ->  ( ( ph  ->  A  e.  x
)  <->  ( ph  ->  A  e.  { z  |  E. y ( ph  /\  z  =  A ) } ) ) )
129, 11albid 1546 . . . . . 6  |-  ( x  =  { z  |  E. y ( ph  /\  z  =  A ) }  ->  ( A. y ( ph  ->  A  e.  x )  <->  A. y
( ph  ->  A  e. 
{ z  |  E. y ( ph  /\  z  =  A ) } ) ) )
136, 12elab 2738 . . . . 5  |-  ( { z  |  E. y
( ph  /\  z  =  A ) }  e.  { x  |  A. y
( ph  ->  A  e.  x ) }  <->  A. y
( ph  ->  A  e. 
{ z  |  E. y ( ph  /\  z  =  A ) } ) )
14 19.8a 1522 . . . . . . . . 9  |-  ( (
ph  /\  z  =  A )  ->  E. y
( ph  /\  z  =  A ) )
1514ex 113 . . . . . . . 8  |-  ( ph  ->  ( z  =  A  ->  E. y ( ph  /\  z  =  A ) ) )
1615alrimiv 1795 . . . . . . 7  |-  ( ph  ->  A. z ( z  =  A  ->  E. y
( ph  /\  z  =  A ) ) )
17 intab.1 . . . . . . . 8  |-  A  e. 
_V
1817sbc6 2840 . . . . . . 7  |-  ( [. A  /  z ]. E. y ( ph  /\  z  =  A )  <->  A. z ( z  =  A  ->  E. y
( ph  /\  z  =  A ) ) )
1916, 18sylibr 132 . . . . . 6  |-  ( ph  ->  [. A  /  z ]. E. y ( ph  /\  z  =  A ) )
20 df-sbc 2816 . . . . . 6  |-  ( [. A  /  z ]. E. y ( ph  /\  z  =  A )  <->  A  e.  { z  |  E. y ( ph  /\  z  =  A ) } )
2119, 20sylib 120 . . . . 5  |-  ( ph  ->  A  e.  { z  |  E. y (
ph  /\  z  =  A ) } )
2213, 21mpgbir 1382 . . . 4  |-  { z  |  E. y (
ph  /\  z  =  A ) }  e.  { x  |  A. y
( ph  ->  A  e.  x ) }
23 intss1 3651 . . . 4  |-  ( { z  |  E. y
( ph  /\  z  =  A ) }  e.  { x  |  A. y
( ph  ->  A  e.  x ) }  ->  |^|
{ x  |  A. y ( ph  ->  A  e.  x ) } 
C_  { z  |  E. y ( ph  /\  z  =  A ) } )
2422, 23ax-mp 7 . . 3  |-  |^| { x  |  A. y ( ph  ->  A  e.  x ) }  C_  { z  |  E. y ( ph  /\  z  =  A ) }
25 19.29r 1552 . . . . . . . 8  |-  ( ( E. y ( ph  /\  z  =  A )  /\  A. y (
ph  ->  A  e.  x
) )  ->  E. y
( ( ph  /\  z  =  A )  /\  ( ph  ->  A  e.  x ) ) )
26 simplr 496 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  =  A )  /\  ( ph  ->  A  e.  x
) )  ->  z  =  A )
27 pm3.35 339 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ph  ->  A  e.  x ) )  ->  A  e.  x )
2827adantlr 460 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  =  A )  /\  ( ph  ->  A  e.  x
) )  ->  A  e.  x )
2926, 28eqeltrd 2155 . . . . . . . . 9  |-  ( ( ( ph  /\  z  =  A )  /\  ( ph  ->  A  e.  x
) )  ->  z  e.  x )
3029exlimiv 1529 . . . . . . . 8  |-  ( E. y ( ( ph  /\  z  =  A )  /\  ( ph  ->  A  e.  x ) )  ->  z  e.  x
)
3125, 30syl 14 . . . . . . 7  |-  ( ( E. y ( ph  /\  z  =  A )  /\  A. y (
ph  ->  A  e.  x
) )  ->  z  e.  x )
3231ex 113 . . . . . 6  |-  ( E. y ( ph  /\  z  =  A )  ->  ( A. y (
ph  ->  A  e.  x
)  ->  z  e.  x ) )
3332alrimiv 1795 . . . . 5  |-  ( E. y ( ph  /\  z  =  A )  ->  A. x ( A. y ( ph  ->  A  e.  x )  -> 
z  e.  x ) )
34 vex 2604 . . . . . 6  |-  z  e. 
_V
3534elintab 3647 . . . . 5  |-  ( z  e.  |^| { x  | 
A. y ( ph  ->  A  e.  x ) }  <->  A. x ( A. y ( ph  ->  A  e.  x )  -> 
z  e.  x ) )
3633, 35sylibr 132 . . . 4  |-  ( E. y ( ph  /\  z  =  A )  ->  z  e.  |^| { x  |  A. y ( ph  ->  A  e.  x ) } )
3736abssi 3069 . . 3  |-  { z  |  E. y (
ph  /\  z  =  A ) }  C_  |^|
{ x  |  A. y ( ph  ->  A  e.  x ) }
3824, 37eqssi 3015 . 2  |-  |^| { x  |  A. y ( ph  ->  A  e.  x ) }  =  { z  |  E. y (
ph  /\  z  =  A ) }
3938, 4eqtri 2101 1  |-  |^| { x  |  A. y ( ph  ->  A  e.  x ) }  =  { x  |  E. y ( ph  /\  x  =  A ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1282    = wceq 1284   E.wex 1421    e. wcel 1433   {cab 2067   _Vcvv 2601   [.wsbc 2815    C_ wss 2973   |^|cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-sbc 2816  df-in 2979  df-ss 2986  df-int 3637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator