ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmpt1s Unicode version

Theorem elrnmpt1s 4602
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1  |-  F  =  ( x  e.  A  |->  B )
elrnmpt1s.1  |-  ( x  =  D  ->  B  =  C )
Assertion
Ref Expression
elrnmpt1s  |-  ( ( D  e.  A  /\  C  e.  V )  ->  C  e.  ran  F
)
Distinct variable groups:    x, C    x, A    x, D
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2081 . . 3  |-  C  =  C
2 elrnmpt1s.1 . . . . 5  |-  ( x  =  D  ->  B  =  C )
32eqeq2d 2092 . . . 4  |-  ( x  =  D  ->  ( C  =  B  <->  C  =  C ) )
43rspcev 2701 . . 3  |-  ( ( D  e.  A  /\  C  =  C )  ->  E. x  e.  A  C  =  B )
51, 4mpan2 415 . 2  |-  ( D  e.  A  ->  E. x  e.  A  C  =  B )
6 rnmpt.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
76elrnmpt 4601 . . 3  |-  ( C  e.  V  ->  ( C  e.  ran  F  <->  E. x  e.  A  C  =  B ) )
87biimparc 293 . 2  |-  ( ( E. x  e.  A  C  =  B  /\  C  e.  V )  ->  C  e.  ran  F
)
95, 8sylan 277 1  |-  ( ( D  e.  A  /\  C  e.  V )  ->  C  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1284    e. wcel 1433   E.wrex 2349    |-> cmpt 3839   ran crn 4364
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-mpt 3841  df-cnv 4371  df-dm 4373  df-rn 4374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator