ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqvisset Unicode version

Theorem eqvisset 2609
Description: A class equal to a variable is a set. Note the absence of dv condition, contrary to isset 2605 and issetri 2608. (Contributed by BJ, 27-Apr-2019.)
Assertion
Ref Expression
eqvisset  |-  ( x  =  A  ->  A  e.  _V )

Proof of Theorem eqvisset
StepHypRef Expression
1 vex 2604 . 2  |-  x  e. 
_V
2 eleq1 2141 . 2  |-  ( x  =  A  ->  (
x  e.  _V  <->  A  e.  _V ) )
31, 2mpbii 146 1  |-  ( x  =  A  ->  A  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1284    e. wcel 1433   _Vcvv 2601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-v 2603
This theorem is referenced by:  elxp5  4829  xpsnen  6318
  Copyright terms: Public domain W3C validator