| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elxp5 | Unicode version | ||
| Description: Membership in a cross product requiring no quantifiers or dummy variables. Provides a slightly shorter version of elxp4 4828 when the double intersection does not create class existence problems (caused by int0 3650). (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| elxp5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2610 |
. 2
| |
| 2 | elex 2610 |
. . . 4
| |
| 3 | elex 2610 |
. . . 4
| |
| 4 | 2, 3 | anim12i 331 |
. . 3
|
| 5 | opexg 3983 |
. . . . 5
| |
| 6 | 5 | adantl 271 |
. . . 4
|
| 7 | eleq1 2141 |
. . . . 5
| |
| 8 | 7 | adantr 270 |
. . . 4
|
| 9 | 6, 8 | mpbird 165 |
. . 3
|
| 10 | 4, 9 | sylan2 280 |
. 2
|
| 11 | elxp 4380 |
. . . 4
| |
| 12 | sneq 3409 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | rneqd 4581 |
. . . . . . . . . . . . 13
|
| 14 | 13 | unieqd 3612 |
. . . . . . . . . . . 12
|
| 15 | vex 2604 |
. . . . . . . . . . . . 13
| |
| 16 | vex 2604 |
. . . . . . . . . . . . 13
| |
| 17 | 15, 16 | op2nda 4825 |
. . . . . . . . . . . 12
|
| 18 | 14, 17 | syl6req 2130 |
. . . . . . . . . . 11
|
| 19 | 18 | pm4.71ri 384 |
. . . . . . . . . 10
|
| 20 | 19 | anbi1i 445 |
. . . . . . . . 9
|
| 21 | anass 393 |
. . . . . . . . 9
| |
| 22 | 20, 21 | bitri 182 |
. . . . . . . 8
|
| 23 | 22 | exbii 1536 |
. . . . . . 7
|
| 24 | snexg 3956 |
. . . . . . . . . 10
| |
| 25 | rnexg 4615 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | uniexg 4193 |
. . . . . . . . 9
| |
| 28 | 26, 27 | syl 14 |
. . . . . . . 8
|
| 29 | opeq2 3571 |
. . . . . . . . . . 11
| |
| 30 | 29 | eqeq2d 2092 |
. . . . . . . . . 10
|
| 31 | eleq1 2141 |
. . . . . . . . . . 11
| |
| 32 | 31 | anbi2d 451 |
. . . . . . . . . 10
|
| 33 | 30, 32 | anbi12d 456 |
. . . . . . . . 9
|
| 34 | 33 | ceqsexgv 2724 |
. . . . . . . 8
|
| 35 | 28, 34 | syl 14 |
. . . . . . 7
|
| 36 | 23, 35 | syl5bb 190 |
. . . . . 6
|
| 37 | inteq 3639 |
. . . . . . . . . . . 12
| |
| 38 | 37 | inteqd 3641 |
. . . . . . . . . . 11
|
| 39 | 38 | adantl 271 |
. . . . . . . . . 10
|
| 40 | op1stbg 4228 |
. . . . . . . . . . . 12
| |
| 41 | 15, 28, 40 | sylancr 405 |
. . . . . . . . . . 11
|
| 42 | 41 | adantr 270 |
. . . . . . . . . 10
|
| 43 | 39, 42 | eqtr2d 2114 |
. . . . . . . . 9
|
| 44 | 43 | ex 113 |
. . . . . . . 8
|
| 45 | 44 | pm4.71rd 386 |
. . . . . . 7
|
| 46 | 45 | anbi1d 452 |
. . . . . 6
|
| 47 | anass 393 |
. . . . . . 7
| |
| 48 | 47 | a1i 9 |
. . . . . 6
|
| 49 | 36, 46, 48 | 3bitrd 212 |
. . . . 5
|
| 50 | 49 | exbidv 1746 |
. . . 4
|
| 51 | 11, 50 | syl5bb 190 |
. . 3
|
| 52 | eqvisset 2609 |
. . . . . 6
| |
| 53 | 52 | adantr 270 |
. . . . 5
|
| 54 | 53 | exlimiv 1529 |
. . . 4
|
| 55 | 2 | ad2antrl 473 |
. . . 4
|
| 56 | opeq1 3570 |
. . . . . . 7
| |
| 57 | 56 | eqeq2d 2092 |
. . . . . 6
|
| 58 | eleq1 2141 |
. . . . . . 7
| |
| 59 | 58 | anbi1d 452 |
. . . . . 6
|
| 60 | 57, 59 | anbi12d 456 |
. . . . 5
|
| 61 | 60 | ceqsexgv 2724 |
. . . 4
|
| 62 | 54, 55, 61 | pm5.21nii 652 |
. . 3
|
| 63 | 51, 62 | syl6bb 194 |
. 2
|
| 64 | 1, 10, 63 | pm5.21nii 652 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |