| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frforeq3 | Unicode version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by Jim Kingdon, 22-Sep-2021.) |
| Ref | Expression |
|---|---|
| frforeq3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2142 |
. . . . . . 7
| |
| 2 | 1 | imbi2d 228 |
. . . . . 6
|
| 3 | 2 | ralbidv 2368 |
. . . . 5
|
| 4 | eleq2 2142 |
. . . . 5
| |
| 5 | 3, 4 | imbi12d 232 |
. . . 4
|
| 6 | 5 | ralbidv 2368 |
. . 3
|
| 7 | sseq2 3021 |
. . 3
| |
| 8 | 6, 7 | imbi12d 232 |
. 2
|
| 9 | df-frfor 4086 |
. 2
| |
| 10 | df-frfor 4086 |
. 2
| |
| 11 | 8, 9, 10 | 3bitr4g 221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-ral 2353 df-in 2979 df-ss 2986 df-frfor 4086 |
| This theorem is referenced by: frind 4107 |
| Copyright terms: Public domain | W3C validator |