| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genpdflem | Unicode version | ||
| Description: Simplification of upper or lower cut expression. Lemma for genpdf 6698. (Contributed by Jim Kingdon, 30-Sep-2019.) |
| Ref | Expression |
|---|---|
| genpdflem.r |
|
| genpdflem.s |
|
| Ref | Expression |
|---|---|
| genpdflem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | genpdflem.r |
. . . . . . . . 9
| |
| 2 | 1 | ex 113 |
. . . . . . . 8
|
| 3 | 2 | pm4.71rd 386 |
. . . . . . 7
|
| 4 | 3 | anbi1d 452 |
. . . . . 6
|
| 5 | 4 | exbidv 1746 |
. . . . 5
|
| 6 | 3anass 923 |
. . . . . . . . . 10
| |
| 7 | 6 | rexbii 2373 |
. . . . . . . . 9
|
| 8 | r19.42v 2511 |
. . . . . . . . 9
| |
| 9 | 7, 8 | bitri 182 |
. . . . . . . 8
|
| 10 | 9 | rexbii 2373 |
. . . . . . 7
|
| 11 | df-rex 2354 |
. . . . . . 7
| |
| 12 | 10, 11 | bitri 182 |
. . . . . 6
|
| 13 | anass 393 |
. . . . . . 7
| |
| 14 | 13 | exbii 1536 |
. . . . . 6
|
| 15 | 12, 14 | bitr4i 185 |
. . . . 5
|
| 16 | 5, 15 | syl6rbbr 197 |
. . . 4
|
| 17 | df-rex 2354 |
. . . 4
| |
| 18 | 16, 17 | syl6bbr 196 |
. . 3
|
| 19 | genpdflem.s |
. . . . . . . . . 10
| |
| 20 | 19 | ex 113 |
. . . . . . . . 9
|
| 21 | 20 | pm4.71rd 386 |
. . . . . . . 8
|
| 22 | 21 | anbi1d 452 |
. . . . . . 7
|
| 23 | 22 | exbidv 1746 |
. . . . . 6
|
| 24 | df-rex 2354 |
. . . . . . 7
| |
| 25 | anass 393 |
. . . . . . . 8
| |
| 26 | 25 | exbii 1536 |
. . . . . . 7
|
| 27 | 24, 26 | bitr4i 185 |
. . . . . 6
|
| 28 | 23, 27 | syl6rbbr 197 |
. . . . 5
|
| 29 | df-rex 2354 |
. . . . 5
| |
| 30 | 28, 29 | syl6bbr 196 |
. . . 4
|
| 31 | 30 | rexbidv 2369 |
. . 3
|
| 32 | 18, 31 | bitrd 186 |
. 2
|
| 33 | 32 | rabbidv 2593 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-ral 2353 df-rex 2354 df-rab 2357 |
| This theorem is referenced by: genpdf 6698 |
| Copyright terms: Public domain | W3C validator |