ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdf Unicode version

Theorem genpdf 6698
Description: Simplified definition of addition or multiplication on positive reals. (Contributed by Jim Kingdon, 30-Sep-2019.)
Hypothesis
Ref Expression
genpdf.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
Assertion
Ref Expression
genpdf  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Distinct variable group:    r, q, s, v, w
Allowed substitution hints:    F( w, v, s, r, q)    G( w, v, s, r, q)

Proof of Theorem genpdf
StepHypRef Expression
1 genpdf.1 . 2  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )
2 prop 6665 . . . . . . 7  |-  ( w  e.  P.  ->  <. ( 1st `  w ) ,  ( 2nd `  w
) >.  e.  P. )
3 elprnql 6671 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
42, 3sylan 277 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 1st `  w ) )  -> 
r  e.  Q. )
54adantlr 460 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 1st `  w ) )  ->  r  e.  Q. )
6 prop 6665 . . . . . . 7  |-  ( v  e.  P.  ->  <. ( 1st `  v ) ,  ( 2nd `  v
) >.  e.  P. )
7 elprnql 6671 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
86, 7sylan 277 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 1st `  v ) )  -> 
s  e.  Q. )
98adantll 459 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 1st `  v ) )  ->  s  e.  Q. )
105, 9genpdflem 6697 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } )
11 elprnqu 6672 . . . . . . 7  |-  ( (
<. ( 1st `  w
) ,  ( 2nd `  w ) >.  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
122, 11sylan 277 . . . . . 6  |-  ( ( w  e.  P.  /\  r  e.  ( 2nd `  w ) )  -> 
r  e.  Q. )
1312adantlr 460 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  r  e.  ( 2nd `  w ) )  ->  r  e.  Q. )
14 elprnqu 6672 . . . . . . 7  |-  ( (
<. ( 1st `  v
) ,  ( 2nd `  v ) >.  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
156, 14sylan 277 . . . . . 6  |-  ( ( v  e.  P.  /\  s  e.  ( 2nd `  v ) )  -> 
s  e.  Q. )
1615adantll 459 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  s  e.  ( 2nd `  v ) )  ->  s  e.  Q. )
1713, 16genpdflem 6697 . . . 4  |-  ( ( w  e.  P.  /\  v  e.  P. )  ->  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) }  =  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v ) q  =  ( r G s ) } )
1810, 17opeq12d 3578 . . 3  |-  ( ( w  e.  P.  /\  v  e.  P. )  -> 
<. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 1st `  w )  /\  s  e.  ( 1st `  v
)  /\  q  =  ( r G s ) ) } ,  { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >.  = 
<. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
1918mpt2eq3ia 5590 . 2  |-  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  ( r  e.  ( 1st `  w
)  /\  s  e.  ( 1st `  v )  /\  q  =  ( r G s ) ) } ,  {
q  e.  Q.  |  E. r  e.  Q.  E. s  e.  Q.  (
r  e.  ( 2nd `  w )  /\  s  e.  ( 2nd `  v
)  /\  q  =  ( r G s ) ) } >. )  =  ( w  e. 
P. ,  v  e. 
P.  |->  <. { q  e. 
Q.  |  E. r  e.  ( 1st `  w
) E. s  e.  ( 1st `  v
) q  =  ( r G s ) } ,  { q  e.  Q.  |  E. r  e.  ( 2nd `  w ) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
201, 19eqtri 2101 1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { q  e.  Q.  |  E. r  e.  ( 1st `  w ) E. s  e.  ( 1st `  v ) q  =  ( r G s ) } ,  { q  e. 
Q.  |  E. r  e.  ( 2nd `  w
) E. s  e.  ( 2nd `  v
) q  =  ( r G s ) } >. )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    /\ w3a 919    = wceq 1284    e. wcel 1433   E.wrex 2349   {crab 2352   <.cop 3401   ` cfv 4922  (class class class)co 5532    |-> cmpt2 5534   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470   P.cnp 6481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-qs 6135  df-ni 6494  df-nqqs 6538  df-inp 6656
This theorem is referenced by:  genipv  6699
  Copyright terms: Public domain W3C validator