![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbii | Unicode version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994.) (Revised by Mario Carneiro, 17-Oct-2016.) |
Ref | Expression |
---|---|
ralbii.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexbii |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralbii.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rexbidv 2369 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | trud 1293 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-4 1440 ax-17 1459 ax-ial 1467 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-rex 2354 |
This theorem is referenced by: 2rexbii 2375 r19.29r 2495 r19.42v 2511 rexcom13 2519 rexrot4 2520 3reeanv 2524 cbvrex2v 2586 rexcom4 2622 rexcom4a 2623 rexcom4b 2624 ceqsrex2v 2727 reu7 2787 0el 3268 iuncom 3684 iuncom4 3685 iuniin 3688 dfiunv2 3714 iunab 3724 iunin2 3741 iundif2ss 3743 iunun 3755 iunxiun 3757 iunpwss 3764 inuni 3930 iunopab 4036 sucel 4165 iunpw 4229 xpiundi 4416 xpiundir 4417 reliin 4477 rexxpf 4501 iunxpf 4502 cnvuni 4539 dmiun 4562 dfima3 4691 rniun 4754 dminxp 4785 imaco 4846 coiun 4850 isarep1 5005 rexrn 5325 ralrn 5326 elrnrexdmb 5328 fnasrn 5362 fnasrng 5364 rexima 5415 ralima 5416 abrexco 5419 imaiun 5420 fliftcnv 5455 abrexex2g 5767 abrexex2 5771 qsid 6194 eroveu 6220 infmoti 6441 genpdflem 6697 genpassl 6714 genpassu 6715 nqprm 6732 nqprrnd 6733 ltnqpr 6783 ltnqpri 6784 ltexprlemm 6790 ltexprlemopl 6791 ltexprlemopu 6793 caucvgprprlemaddq 6898 caucvgprprlem1 6899 caucvgsrlemgt1 6971 elreal 6997 axcaucvglemres 7065 dfinfre 8034 suprzclex 8445 supinfneg 8683 infsupneg 8684 ublbneg 8698 4fvwrd4 9150 caucvgre 9867 rexanuz 9874 rexfiuz 9875 resqrexlemglsq 9908 resqrexlemsqa 9910 resqrexlemex 9911 rersqreu 9914 clim0 10124 divalgb 10325 infssuzex 10345 bezoutlemmain 10387 bezoutlemex 10390 |
Copyright terms: Public domain | W3C validator |