| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hbim | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| hb.1 |
|
| hb.2 |
|
| Ref | Expression |
|---|---|
| hbim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-4 1440 |
. . 3
| |
| 2 | hb.2 |
. . 3
| |
| 3 | 1, 2 | imim12i 58 |
. 2
|
| 4 | ax-i5r 1468 |
. 2
| |
| 5 | hb.1 |
. . . 4
| |
| 6 | 5 | imim1i 59 |
. . 3
|
| 7 | 6 | alimi 1384 |
. 2
|
| 8 | 3, 4, 7 | 3syl 17 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-5 1376 ax-gen 1378 ax-4 1440 ax-i5r 1468 |
| This theorem is referenced by: hbbi 1480 hbia1 1484 19.21h 1489 19.38 1606 hbsbv 1858 hbmo1 1979 hbmo 1980 moexexdc 2025 2eu4 2034 cleqh 2178 hbral 2395 |
| Copyright terms: Public domain | W3C validator |