ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinab Unicode version

Theorem iinab 3739
Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab  |-  |^|_ x  e.  A  { y  |  ph }  =  {
y  |  A. x  e.  A  ph }
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2219 . . . 4  |-  F/_ y A
2 nfab1 2221 . . . 4  |-  F/_ y { y  |  ph }
31, 2nfiinxy 3705 . . 3  |-  F/_ y |^|_ x  e.  A  {
y  |  ph }
4 nfab1 2221 . . 3  |-  F/_ y { y  |  A. x  e.  A  ph }
53, 4cleqf 2242 . 2  |-  ( |^|_ x  e.  A  { y  |  ph }  =  { y  |  A. x  e.  A  ph }  <->  A. y ( y  e. 
|^|_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  A. x  e.  A  ph } ) )
6 abid 2069 . . . 4  |-  ( y  e.  { y  | 
ph }  <->  ph )
76ralbii 2372 . . 3  |-  ( A. x  e.  A  y  e.  { y  |  ph } 
<-> 
A. x  e.  A  ph )
8 vex 2604 . . . 4  |-  y  e. 
_V
9 eliin 3683 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  { y  |  ph }  <->  A. x  e.  A  y  e.  { y  |  ph }
) )
108, 9ax-mp 7 . . 3  |-  ( y  e.  |^|_ x  e.  A  { y  |  ph } 
<-> 
A. x  e.  A  y  e.  { y  |  ph } )
11 abid 2069 . . 3  |-  ( y  e.  { y  | 
A. x  e.  A  ph }  <->  A. x  e.  A  ph )
127, 10, 113bitr4i 210 . 2  |-  ( y  e.  |^|_ x  e.  A  { y  |  ph } 
<->  y  e.  { y  |  A. x  e.  A  ph } )
135, 12mpgbir 1382 1  |-  |^|_ x  e.  A  { y  |  ph }  =  {
y  |  A. x  e.  A  ph }
Colors of variables: wff set class
Syntax hints:    <-> wb 103    = wceq 1284    e. wcel 1433   {cab 2067   A.wral 2348   _Vcvv 2601   |^|_ciin 3679
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-iin 3681
This theorem is referenced by:  iinrabm  3740
  Copyright terms: Public domain W3C validator