ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cleqf Unicode version

Theorem cleqf 2242
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2178. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
cleqf.1  |-  F/_ x A
cleqf.2  |-  F/_ x B
Assertion
Ref Expression
cleqf  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )

Proof of Theorem cleqf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2075 . 2  |-  ( A  =  B  <->  A. y
( y  e.  A  <->  y  e.  B ) )
2 nfv 1461 . . 3  |-  F/ y ( x  e.  A  <->  x  e.  B )
3 cleqf.1 . . . . 5  |-  F/_ x A
43nfcri 2213 . . . 4  |-  F/ x  y  e.  A
5 cleqf.2 . . . . 5  |-  F/_ x B
65nfcri 2213 . . . 4  |-  F/ x  y  e.  B
74, 6nfbi 1521 . . 3  |-  F/ x
( y  e.  A  <->  y  e.  B )
8 eleq1 2141 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
9 eleq1 2141 . . . 4  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
108, 9bibi12d 233 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  <->  x  e.  B )  <->  ( y  e.  A  <->  y  e.  B
) ) )
112, 7, 10cbval 1677 . 2  |-  ( A. x ( x  e.  A  <->  x  e.  B
)  <->  A. y ( y  e.  A  <->  y  e.  B ) )
121, 11bitr4i 185 1  |-  ( A  =  B  <->  A. x
( x  e.  A  <->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wal 1282    = wceq 1284    e. wcel 1433   F/_wnfc 2206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-cleq 2074  df-clel 2077  df-nfc 2208
This theorem is referenced by:  abid2f  2243  n0rf  3260  eq0  3266  iunab  3724  iinab  3739  sniota  4914
  Copyright terms: Public domain W3C validator