ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intminss Unicode version

Theorem intminss 3661
Description: Under subset ordering, the intersection of a restricted class abstraction is less than or equal to any of its members. (Contributed by NM, 7-Sep-2013.)
Hypothesis
Ref Expression
intminss.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
intminss  |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem intminss
StepHypRef Expression
1 intminss.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21elrab 2749 . 2  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  ps ) )
3 intss1 3651 . 2  |-  ( A  e.  { x  e.  B  |  ph }  ->  |^| { x  e.  B  |  ph }  C_  A )
42, 3sylbir 133 1  |-  ( ( A  e.  B  /\  ps )  ->  |^| { x  e.  B  |  ph }  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   {crab 2352    C_ wss 2973   |^|cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986  df-int 3637
This theorem is referenced by:  onintss  4145  cardonle  6456
  Copyright terms: Public domain W3C validator