![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylbir | Unicode version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylbir.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylbir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylbir |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbir.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylbir.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3imtr3i 198 3ori 1231 19.30dc 1558 nf4r 1601 cbvexh 1678 equveli 1682 sbequilem 1759 sb5rf 1773 nfsbxy 1859 nfsbxyt 1860 sbcomxyyz 1887 dvelimALT 1927 dvelimfv 1928 dvelimor 1935 mo2n 1969 mo23 1982 2exeu 2033 bm1.1 2066 necon1idc 2298 sbhypf 2648 vtocl2 2654 vtocl3 2655 reu6 2781 rmo2ilem 2903 uneqin 3215 abn0r 3270 inelcm 3304 vdif0im 3309 difrab0eqim 3310 r19.3rm 3330 r19.9rmv 3333 difprsn1 3525 intminss 3661 bm1.3ii 3899 intexabim 3927 copsex2g 4001 opelopabt 4017 eusv2nf 4206 reusv3i 4209 onintrab2im 4262 ordtri2orexmid 4266 setindel 4281 onsucuni2 4307 ordtri2or2exmid 4314 zfregfr 4316 tfi 4323 mosubopt 4423 eqrelrel 4459 xpiindim 4491 opeliunxp2 4494 opelrn 4586 issref 4727 xpmlem 4764 rnxpid 4775 ssxpbm 4776 relcoi2 4868 unixpm 4873 cnviinm 4879 iotanul 4902 funimaexglem 5002 fvelrnb 5242 fvmptssdm 5276 fnfvrnss 5346 fressnfv 5371 fconstfvm 5400 f1mpt 5431 ovprc 5560 fo1stresm 5808 fo2ndresm 5809 spc2ed 5874 reldmtpos 5891 tfrlem5 5953 tfrlem9 5958 tfri2 5975 ener 6282 domtr 6288 unen 6316 cardval3ex 6454 distrnqg 6577 nqnq0pi 6628 nqnq0a 6644 nqnq0m 6645 distrnq0 6649 nqprloc 6735 ltexprlemopl 6791 ltexprlemopu 6793 recexre 7678 nn1suc 8058 msqznn 8447 nn0ind 8461 fnn0ind 8463 ublbneg 8698 qreccl 8727 fzo1fzo0n0 9192 elfzom1elp1fzo 9211 fzo0end 9232 fzind2 9248 flqeqceilz 9320 nnsinds 9429 nn0sinds 9430 iser0f 9472 redivap 9761 imdivap 9768 cvg1nlemres 9871 sqrt0 9890 odd2np1 10272 opoe 10295 omoe 10296 opeo 10297 omeo 10298 dfgcd2 10403 gcdmultiplez 10410 dvdssq 10420 ialgfx 10434 bdbm1.3ii 10682 |
Copyright terms: Public domain | W3C validator |