| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcab | Unicode version | ||
| Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.) |
| Ref | Expression |
|---|---|
| jcab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 107 |
. . . 4
| |
| 2 | 1 | imim2i 12 |
. . 3
|
| 3 | simpr 108 |
. . . 4
| |
| 4 | 3 | imim2i 12 |
. . 3
|
| 5 | 2, 4 | jca 300 |
. 2
|
| 6 | pm3.43 566 |
. 2
| |
| 7 | 5, 6 | impbii 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
| This theorem depends on definitions: df-bi 115 |
| This theorem is referenced by: pm4.76 568 pm5.44 867 2eu4 2034 ssconb 3105 ssin 3188 raaan 3347 tfri3 5976 isprm2 10499 |
| Copyright terms: Public domain | W3C validator |