ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri3 Unicode version

Theorem tfri3 5976
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule  G ( as described at tfri1 5974). Finally, we show that  F is unique. We do this by showing that any class  B with the same properties of  F that we showed in parts 1 and 2 is identical to  F. (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri3.1  |-  F  = recs ( G )
tfri3.2  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
Assertion
Ref Expression
tfri3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Distinct variable groups:    x, B    x, F    x, G

Proof of Theorem tfri3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1461 . . . 4  |-  F/ x  B  Fn  On
2 nfra1 2397 . . . 4  |-  F/ x A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )
31, 2nfan 1497 . . 3  |-  F/ x
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )
4 nfv 1461 . . . . . 6  |-  F/ x
( B `  y
)  =  ( F `
 y )
53, 4nfim 1504 . . . . 5  |-  F/ x
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )
6 fveq2 5198 . . . . . . 7  |-  ( x  =  y  ->  ( B `  x )  =  ( B `  y ) )
7 fveq2 5198 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
86, 7eqeq12d 2095 . . . . . 6  |-  ( x  =  y  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( B `  y )  =  ( F `  y ) ) )
98imbi2d 228 . . . . 5  |-  ( x  =  y  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) ) ) )
10 r19.21v 2438 . . . . . 6  |-  ( A. y  e.  x  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
11 rsp 2411 . . . . . . . . . 10  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) ) )
12 onss 4237 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  x  C_  On )
13 tfri3.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  = recs ( G )
14 tfri3.2 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( Fun 
G  /\  ( G `  x )  e.  _V )
1513, 14tfri1 5974 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  On
16 fvreseq 5292 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  Fn  On  /\  F  Fn  On )  /\  x  C_  On )  ->  ( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
1715, 16mpanl2 425 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
18 fveq2 5198 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  |`  x )  =  ( F  |`  x )  ->  ( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
1917, 18syl6bir 162 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2012, 19sylan2 280 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  Fn  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2120ancoms 264 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2221imp 122 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  ->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) )
2322adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
2413, 14tfri2 5975 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
2524jctr 308 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
26 jcab 567 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) )  <->  ( (
x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  (
x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
2725, 26sylibr 132 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
28 eqeq12 2093 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) )  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) )
2927, 28syl6 33 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) ) )
3029imp 122 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  x  e.  On )  ->  ( ( B `
 x )  =  ( F `  x
)  <->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
3130adantl 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( ( B `  x )  =  ( F `  x )  <-> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) ) )
3223, 31mpbird 165 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( B `  x
)  =  ( F `
 x ) )
3332exp43 364 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3433com4t 84 . . . . . . . . . . . 12  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3534exp4a 358 . . . . . . . . . . 11  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) ) )
3635pm2.43d 49 . . . . . . . . . 10  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3711, 36syl 14 . . . . . . . . 9  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3837com3l 80 . . . . . . . 8  |-  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3938impd 251 . . . . . . 7  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4039a2d 26 . . . . . 6  |-  ( x  e.  On  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  -> 
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4110, 40syl5bi 150 . . . . 5  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  ->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
425, 9, 41tfis2f 4325 . . . 4  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) )
4342com12 30 . . 3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) )
443, 43ralrimi 2432 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. x  e.  On  ( B `  x )  =  ( F `  x ) )
45 eqfnfv 5286 . . . 4  |-  ( ( B  Fn  On  /\  F  Fn  On )  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4615, 45mpan2 415 . . 3  |-  ( B  Fn  On  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4746biimpar 291 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( F `  x ) )  ->  B  =  F )
4844, 47syldan 276 1  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1284    e. wcel 1433   A.wral 2348   _Vcvv 2601    C_ wss 2973   Oncon0 4118    |` cres 4365   Fun wfun 4916    Fn wfn 4917   ` cfv 4922  recscrecs 5942
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-recs 5943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator